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1. Introduction

The goal of this article is to solve and analyze the BCS equations starting from modern
nucleon-nucleon (NN) forces based on chiral effective field theory [2, 3, 4, 5].

The paper is organized as follows. Section 2 introduces the BCS theory that is the standard
framework for a microscopic description of nucleonic pairing. In particular, the numerical imple-
mentation first introduced by Khodel et al. [6] will be reviewed in Sect. 2.4. Section 3 describes
our predictions for pairing gaps in the singlet and in the coupled channel cases. Section 4 shows
results of some preliminary calculations of the Cooper pair wavefunction.

2. BCS theory

2.1 Cooper pair instability

In 1956 Leon Cooper [7] was the first to understand that introducing a weak attractive interac-
tion between pair of fermions (see case (a) in Fig. 1) makes the ground state of a degenerate Fermi
gas at zero temperature unstable, no matter how small is the interaction1.

What Cooper found is that such Fermi system is unstable with respect to formation of a co-
herent state of pairs. It is well known from elementary quantum mechanics that two particles in
three dimensions can not form a bound state unless the attractive potential is strong enough. As
a consequence, to understand Cooper pair formation is crucial to appreciate an important feature:
the reduction from three (3D) to two spatial dimensions (2D) in the description of the problem.
Because only particles near the Fermi surface are subject to pair condensation, the relevant physics
is confined essentially to a 2D shell around the Fermi surface (see case (b) in Fig. 1 where particles
belonging to the Fermi sea do not participate in the formation of the Cooper pairs and contribute to
stabilize the ground state). Pairing interaction is usually weak enough that radius of pairs is larger
than the interparticle distance.

The Cooper pair concept is at the basis of the Bardeen-Cooper-Schrieffer (BCS) description of
superconductivity [8, 9] and in many other physical systems where pairing-like interactions play a
dominant role.

Concerning atomic systems, Cooper pairs are usually formed by two electrons in a singlet
state, i.e. where the particle spins are antiparallel with total spin S = 0. This is a natural conse-
quence of the Pauli exclusion principle if electrons belong to a s orbital state (L = 0). Spin triplet
states requires that the two fermions forming a Cooper pair must have a non-zero orbital angular
momentum, i.e. L = 1 which is the case of superfluid states of liquid 3He [10]. In nuclear physics,
things are more involved by the fact that the anti-symmetrization of the Cooper pair should also
consider the isospin degree of freedom. As a consequence for L = 0 one could observe pairing

1L. Cooper found that the ground-state energy of a degenerate Fermi gas with an attractive interaction between pairs
of electrons on top of a quiescent Fermi sphere is, in the weak coupling regime,

E ' 2EF −2ω exp(−2/ν(EF )V ) , (2.1)

where pairs form a bound state even if the interaction V is arbitrarily small and the energy of the bound state is non-
perturbative in ν(EF )V , where ν(EF ) is the density of states.
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Figure 1: (a) Since the total momentum of the pair must be conserved, it is evident that the amount of phase
space available for transition from one state to another state, of given total momentum, is a strong function
of the total momentum. If the particles are confined to the region kF−δ ≤ k≤ kF +δ , it becomes maximum
when the total momentum KKK = 0. (b) Cooper pairs are formed by fermions belonging to a thin energy shell
(E0

F −ω < E < E0
F +ω) where particles in the Fermi sea do not participate to the dynamics.

effects both in the 1S0 channel (with the two nucleons in an isospin triplet state T = 1) and in the
3S1 channel (in an isospin singlet state T = 0).

2.2 BCS ansatz

BCS theory, firstly proposed to describe superconductivity in metals from a microscopic point
of view, turned out to be very useful to understand superfluidity in nuclear systems [11]. In fact, in
nuclear physics one can introduce a BCS-like ansatz

|BCS〉= Π
k≥0

(
uk + vka†

ka†
k̄

)
|0〉 , (2.2)

where |0〉 denotes the filled Fermi sea state, while uk and vk represent the variational parameters
(conveniently normalized with the requirement that |uk|2 + |vk|2 = 1). For each state k > 0 there
always exists a conjugate state k̄ < 0. As a consequence, the |BCS〉 state is a superposition of
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different number of pairs

|BCS〉 ∼ |0〉+ ∑
k>0

vk

uk
a†

ka†
k̄ |0〉+

1
2 ∑

kk′>0

vk

uk

vk′

uk′
a†

ka†
k̄a†

k′a
†
k̄′
|0〉+ . . . . (2.3)

Of course, Eq. (2.2) can be rewritten as follows

|BCS〉 ∼ exp(P†)|0〉=
∞

∑
ν=0

1
ν!

(P†)ν |0〉 (2.4)

with the introduction of a pair creation operator

P† = ∑
k>0

uk

vk
a†

ka†
k̄ . (2.5)

The BCS ansatz leads naturally to a condensate of bound pairs (a similar relation holds for bosons
in a BEC state, see footnote in Sect. 4).

2.3 BCS equations

To understand the consequences of the BCS ansatz it is easier to start with a Hamiltonian

H = ∑
k1k2

tk1k2a†
k1

ak2 +
1
4 ∑

k1k2k3k4

Vk1k2k3k4a†
k1

a†
k2

ak3ak4 , (2.6)

comprising a one-body kinetic and a two-body potential contributions. An additional term −λ N̂
has to be added to ensure particle number conservation (at the level of expectation value). λ will
be identified as the chemical potential. Working out the variation

δ 〈BCS|H−λ N̂|BCS〉= 0 (2.7)

leads to the following set of equations

2ε̃kukvk +∆k(v2
k−u2

k) = 0 , (2.8)

∆k = −∑
k′

Vkk̄k′k̄′uk′vk′ , (2.9)

ε̃k =
1
2

(
tkk + tk̄k̄ +∑

k
(Vkk′kk′+Vk̄k′k̄k′)v2

k′

)
−λ . (2.10)

The solution of (2.9) is a recursive relation for the energy ∆

∆k =−
1
2 ∑

k′>0
Vkk̄k′k̄′

∆k′√
ε̃2

k′+∆2
k

, (2.11)

where the BCS variational parameters can be derived from the relations

v2
k =

1
2


1− ε̃k√

ε̃2 +∆2
k


 , (2.12)

u2
k =

1
2


1+

ε̃k√
ε̃2 +∆2

k


 . (2.13)
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For a finite ∆F = ∆k=kF there is always a reduction in energy for the paired state and states close to
the Fermi surface rearrange into a condensate of pairs. ∆F itself is a measure of the energy gain, in
fact 2∆F can be interpreted as the energy that must be provided to reach the first excited state, i.e.
the energy necessary to break a Cooper pair (see Ref. [11]). Eq. (2.11) is called the gap equation.

2.4 Khodel’s method

In this section we explain the method suggested in Ref. [6] to solve the BCS equations by
partial-wave decomposition that has been proven to be stable even for small values of the gap and
to require only the initial assumption of a scale factor δ (results, of course, will be δ -independent).
The BCS equation reads in terms of the NN potential V (k,k′) = 〈k |V |k′〉 as follows

∆(k) =−∑
k′
〈k |V |k′〉 ∆

(
k′
)

2E
(
k′
) , (2.14)

with E(k)2 = ξ (k)2 + |∆(k)|2 and ξ (k) = ε(k)−µ , ε(k) denotes the single-particle energy and µ

is the chemical potential. We can decompose both the interaction and the gap function into their
partial-wave components,

〈k |V |k′〉 = 4π ∑
l
(2l +1)Pl(k̂ · k̂

′
)Vl(k,k′) (2.15)

∆(k) = ∑
lm

√
4π

2l +1
Ylm(k̂)∆lm(k) , (2.16)

where Ylm(k̂) denotes the spherical harmonics, l and m are the quantum numbers associated with
the orbital angular momentum and its projection along the z axis and Pl(k̂ · k̂

′
) refers to the Legendre

polynomials. After performing an angle-average approximation we have the following equation for
any value of l

∆
j
l (k) = ∑

l′

(−1)Λ

π

∫
dk′ V j

ll′(k,k
′)

∆
j
l′(k
′)

E(k′)
k′2 , (2.17)

where Λ = 1+(l− l′)/2, j refers to the total angular momentum JJJ = lll + SSS including spin SSS and
now E(k)2 = ξ (k)2 +∑ jl ∆

j
l (k)

2. The angle-average approximation, firstly introduced by Baldo
et al. in Ref. [12], has been carefully analyzed by Khodel et al. in Ref. [13] where the authors
have shown that in such case even if the pairing gap is slightly overestimated, nonetheless it is an
acceptable sacrifice in accuracy if the primary interest lies in the magnitude of the pairing effect.
Gaps with different l and j are coupled due to the energy denominator but we assume that different
components of the interaction act mainly on non-overlapping intervals in density. We define an
auxiliary potential W according to

Wll′(k,k′) =Vll′(k,k′)− vll′φll′(k)φll′(k′) , (2.18)

where φll′(k) =Vll′(k,kF)/Vll′(kF ,kF) and vll′ =Vll′(kF ,kF) so that Wll′(k,k′) vanishes on the Fermi
surface. The coupled gap equations can be rewritten as

∆l(k)−∑
l′
(−1)Λ

∫
dτ
′ Wll′(k,k′)

∆l′(k′)
E(k′)

= ∑
l′

Dll′φll′(k) , (2.19)
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Figure 2: Self-consistent procedure (Eqs. 2.20–2.22) for the solution of the gap equation according to
Khodel’s prescription [6].

where dτ = k2dk/π and the coefficients Dll′ satisfy

Dll′ = (−1)Λvll′

∫
dτ φll′(k)

∆l′(k)
E(k)

. (2.20)

The gap is defined as follows

∆l(k) = ∑
l1l2

Dl1l2 χ
l1l2
l (k) , (2.21)

where

χ
l1l2
l (k)−∑

l′
(−1)Λ

∫
dτ
′ Wll′(k,k′)

χ
l1l2
l′ (k′)
E(k′)

= δll1φl1l2(k) . (2.22)

The property that Wll′(k,k′) vanishes on the Fermi surface ensures a very weak dependence of
χ

l1l2
l (k) on the exact value of the gap so that, in first approximation, it is possible to rewrite the

previous equation (2.22) as

χ
l1l2
l (k)−∑

l′
(−1)Λ

∫
dτ
′ Wll′(k,k′)

χ
l1l2
l′ (k′)√

ξ 2(k′)+δ 2
= δll1φl1l2(k) . (2.23)

We use this equation to evaluate χ
l1l2
l (k) initially by matrix inversion, then we use this function

to self-consistently evaluate Dll′ . Finally, we solve the system given by Eqs. (2.20)–(2.22) in a
self-consistent procedure as shown in Fig. 2. We always assume µ = εF (determining µ within the
self-consistency procedure can slightly modify this relation [14]) and adopt the relativistic version

of the single-particle energy ε (k) =
√

k2 +M2
N , where MN is the nucleon mass.
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LO

Contributions to the effective two-body potential

+ NLO

+ N2LO

+ N3LO

(                )contact interactions 
and 1π-exchange

(            )including  
2π-exchange

+ ...

+ ...

+ ...

(            )including  
3π-exchange + ...

Figure 3: Schematic description of the contributions to the two-body nuclear potential in ChPT. Solid lines
represent nucleons and dashed lines pions. Between parentheses short comments have been included to
explain what contributions must be included order by order.

2.5 The two-body potential

In Chiral Perturbation Theory (ChPT) one identifies the appropriate low-energy degrees of
freedom and derives the most general Lagrangian compatible with the symmetries and symmetry-
breaking pattern of the underlying fundamental theory (i.e., QCD). The first steps towards a realistic
NN potential from first principles started almost twenty years ago [15]. In this approach, the nuclear
potential emerges naturally as a hierarchy of terms controlled by a power expansion in Q/Λχ ,
where Q is a soft scale (pion mass, nucleon momentum) and Λχ is a hard scale (nucleon mass MN

or chiral symmetry breaking scale 4π fπ ). Two-nucleon forces appear at leading order (Q/Λχ)
0,

while three-nucleon forces appear first at order (Q/Λχ)
3, or next-to-next-to-leading order (N2LO).

We employ the high-precision NN potentials developed in Ref. [2, 4, 5] at next-to-next-to-next-to-
leading order (N3LO) in the chiral expansion with three choices of the Lippman-Schwinger (LS)
cutoff scales (Λ = 450,500 and 600 MeV). In Fig. 3 we show, in a very simplified way (see Fig.1
in Ref. [2] for more details), the relevant contributions to the nuclear potential in the Weinberg’s
power counting. At the lowest order (LO, ∼ Q0) the NN amplitude is made up of two contact
terms and static 1π-exchange. At the next, non-vanishing, order (NLO, ∼ Q2) 2π-exchange terms
appear for the first time in addition to new contact terms with additional spin structures. The 2π-
exchange terms are finalized at order N3LO (∼Q4) with derivative seagull ππNN vertices (able to
include physics from intermediate ∆(1232)-isobar contributions). At this order there are no new
contact terms. In addition, at order N3LO (∼ Q4) three-pion exchange terms are included, even if
with a rather negligible contribution. Iterating the potential in a LS equation requires cutting off

7
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high momenta components to avoid infinities. Therefore a regulator function f (p′, p) has to be
introduced via

V (ppp, ppp′)→V (ppp, ppp′) f (p′, p) (2.24)

with
f (p′, p) = exp

(
−(p′/Λ)2n− (p/Λ)2n) with n = 2 or 3 . (2.25)

A method to improve NN potential’s performances is a renormalization group approach [16], in
particular the Similarity Renormalization Group (SRG). The main feature of the SRG is its sup-
pression of off-diagonal momentum-space matrix elements. In this framework, one can define a
class of Hamiltonians (H = Trel +V )

Hs =UsHU†
s ≡ Trel +Vs , (2.26)

introducing a generator

ηs =
dUs

ds
U†

s =−η
†
s , (2.27)

with Trel as the kinetic energy in terms of the relative momentum. If we may choose ηs = [Gs,Hs],
the flow equation takes the form

dHs

ds
= [[Gs,Hs] ,Hs] . (2.28)

The SRG interaction has many salient features of low-momentum interactions, such as indepen-
dence of the physical observables from the operator Gs, perturbativeness and universality. A very
interesting feature of the SRG procedure is that the tensor interaction strength is reduced as s
increases while leaving unchanged the corresponding phase shifts. This modification to the in-
teraction can strongly modify the 3SD1 gap, for instance. Since all physical observables should
remain unchanged under an SRG transformation, this variation could be interpreted as an uncer-
tainty estimate in the pairing force. A common choice for Gs is Trel , and in this case as s increases,
Vs approaches a diagonal form. From Eq. (2.28) it is easy to see that, if H is a two-body Hamil-
tonian expressed in the second quantization formalism, (dHs/ds)s=0 will also include three-body
interactions. In this way, the evolution over the flow will naturally induce many-body interactions
that must be consistently added to the genuine three-body forces.

3. Results

In the first panel of Fig. 4 we show the singlet channel case for neutron matter. The gap ∆F

reaches a maximum value of approximately 3 MeV at kF ' 0.85 fm−1 when the N3LO potentials
are employed. In particular, the potential with a cutoff of 450 MeV produces the largest values
for the gap, while the other two choices are almost equivalent. Our predictions are in rather good
agreement with the gap computed from well known realistic potentials like the CD-Bonn or Ni-
jmegen interactions [17], but at larger densities the N3LO gap exhibits a higher value. This can be
explained by observing that the phase shifts from the chiral N3LO potentials exhibit more attrac-
tion than the conventional NN potential for high momenta. As shown in Ref. [1] the inclusion of
three-body forces and self-energy effects reduce the size of the gap (∼ 0.5 MeV) and slightly shifts
the peak towards smaller densities. In the last years, this trend has been confirmed by ab-initio
approaches [18, 19, 20].

8
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(a)

(b)

Figure 4: (a) The 1S0 gap for neutron matter computed with the realistic chiral potentials of Ref. [2, 4, 5]
at N3LO with three different LS cutoffs: 450 MeV (red line), 500 MeV (dashed blue line) and 600 MeV
(green dash-dotted line). (b) The gap in the 3PF2 channel obtained from the N3LO [2, 4, 5] interactions in
comparison with several realistic NN potentials taken from Ref. [17].

In the neutron matter case, while at low density the dominant channel is the 1S0 partial wave,
at higher densities the high-momentum components (which are repulsive) become more important,
suppressing the gap, and this happens at kF ≈ 1.5 fm−1. At these densities, the only channel which
substantially contributes to the neutron matter gap is the coupled 3PF2, where the coupling is due
to the tensor interaction [13, 21]. As can be seen in Fig. 4 (b), there is a significant dependence of
the gap on the potential models (see also Ref. [17]), though the peak in the gap consistently occurs
between 2.2 ≤ kF ≤ 2.6 fm−1. The chiral potentials display a pronounced cutoff-dependence: if,
on one hand, the 450 MeV and 500 MeV (red and blue dashed lines) give reasonable predictions
in an accepted range of values, on the other hand the 600 MeV case (green dash-dotted line) does
not converge and the gap curve diverges for densities above 2.0 fm−1. At the high densities and
associated momentum scales relevant for pairing in this channel, realistic NN interactions are not as
well constained by fits to phase shifts, which partially explains the differences in the observed gaps.
As explained in Ref. [2], in this channel one expects a crucial contribution from the three-pion-
exchange topology at N4LO and from the contact term at N5LO, which should reduce the attraction

9
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(a)

(b)

Figure 5: (a) The gap in the 3SD1 channel. We plot our calculations with the N3LO interactions (red, blue
dashed and green dash-dotted lines, respectively for 450, 500 and 600 MeV cutoffs) in comparison with
results obtained employing BONN-A potential [23] (yellow curve) and OPEG [24] (violet line). All results
suggest a very large pairing gap (around 10 MeV). (b) The evolution of the pairing gap in the 3SD1 channel
with SRG-evolved interactions. We employed Trel as evolution operator for Gs. The arrow denote the flow
variable s from larger to smaller values.

in this channel. All realistic interactions give a gap of magnitude ≤ 1 MeV, and we expect a small
but not negligible reduction of the gap from the higher orders in Q/Λχ . The inclusion of three-
body forces and self-energy effects suggests a strong reduction of the gap, as confirmed by recent
ab-initio calculations [22].

In the nuclear matter case a non-vanishing gap appears in the 3SD1 channel. The presence
of a bound state in this channel and the very high phase shifts in the 3S1 channel indicate that the
interaction is more attractive than in the other channels. As a consequence the gap has a magnitude
of about 10 MeV, as can be seen in Fig. 5 (a), with conventional realistic potentials.

There is no agreement on the details of the gap in this channel, but both Elgarøy et al. [23]
and Takatsuka et al. [24] confirm the possibility of a gap of such magnitude (see curves labeled,
respectively, by BONN-A and OPEG in the upper panel of Fig. 5). While BONN-A is a complete
one-boson exchange potential, OPEG contains only the one-pion exchange tail and a Gaussian

10
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repulsive core. As already experienced in the 3PF2 case, the 450 and 500 MeV cutoffs give reason-
able gaps (∆F ∼ 8 MeV) in agreement with BONN-A phenomenology, while the gap produced by
the 600 MeV cutoff blows up and seems not to be under control.

The application of the SRG procedure is shown in Fig. 5 (b), where we tested the evolution
operator Gs = Trel . The most remarkable feature is that this procedure stabilizes the gaps produced
with the higher cutoffs which basically evolve towards the same output (the maximum is reduced
to approximately 5 MeV, a factor of 2 smaller compared to the bare potential). The SRG procedure
is less efficient for the 450 MeV case. This behaviour could have several explanations, notably
involving the tensor interaction, and deserves a dedicated analysis in a future paper.

We believe that this property must be further exploited in the future with the goal to generate
a universal NN potential: a crucial ingredient for obtaining realistic pairing gaps in higher-partial
waves.

4. Study of the Cooper pair wavefunctions

The Cooper pair wavefunction is defined as follows

Ψpair ≡C
′〈Φ0|ψ†(rrr,↑)ψ†(rrr

′
,↓)|Φ0〉=

C
(2π)3

∫
dkkk

∆(k)
2E(k)

eikkk·(rrr−rrr
′
) , (4.1)

where |Φ0〉 is the BCS ground state, ψ† is the particle creation operator and C,C
′

are normal-
ization factors that can be fixed by imposing normalization conditions. Defining r = |r− r′|, we
identify ρ(r) = |Ψ(r)|2r2 in the singlet channel as the probability density of finding the Cooper-
pair particles at a distance r from one another, assuming unit-normalization of Ψ ≡ Ψpair. Then
P(r) =

∫ r
0 ds|Ψ(s)|2s2 gives the probability density of finding these particles within a distance r of

each other. Observing that the pairing gap in the S channel is larger then the one in the D channel
we assumed, in the SD channel, |Ψ(r)|2≈ |Ψl=0(r)|2 and we have approximated ∆(k) with ∆l=0(k).
It is now well established [14, 25, 26, 27, 28, 29, 30, 31, 32, 33] that, at low density, nuclear mat-
ter can undergo to a phase transition, belonging to the BCS-BEC crossover phenomenon [34, 35],
associated with the eventual collapse of the Cooper pairs into deuteron-like particles (see Fig. 6).
More than twenty years ago, Baldo et al. [14] observed a large overlap between the Cooper pair
wavefunction and the deuteron wave function indicating that at low densities the BCS solution is
hardly distinguishable from a gas of deuterons. Their conclusion was that BCS theory describes,
in this peculiar density regime, a smooth transition from the SD superfluid phase of symmetric
nuclear matter to the Bose Einstein condensate phase of an ideal deuteron gas.

Since BCS equations are still valid in the BEC regime [36], it is interesting to study the evolu-
tion of pairs of correlated nucleons as a function of density and spatial coordinate, starting from the
solution of Eqs. (2.20–2.22). In fact the BCS wave function in the coordinate space shares some
similarities to that of a Bose-Einstein condensate of a tightly bound pair of particles2. One of the
main differences is that the ratio of the pair radius to the interparticle distance is very small in the
BEC regime and very large in the BCS regime.

2In the BEC limit (1/kF as � 1) we can approximate the pairs as point-like bosons b and the ground-state wave-
function can be written as a coherent state of these bosons: |Φ〉=C exp(λ b̂†

0)|0〉 where C is the normalization constant
and λ = 〈Φ|b̂†

0|Φ〉 is the order parameter.

11
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BEC BCS
BCS-BEC

1

kF as
� 1

1

kF as
⌧ �1kF |as| < 1

Figure 6: Crossover from BCS to BEC regimes in a two-component Fermi gas. The BCS end BEC regimes
correspond respectively to the limiting cases 1/kF as� 1 and 1/kF as�−1, while the crossover region can
be approximately identified by kF |as|< 1. kF is the Fermi momentum and as is the scattering length.

A few years ago, Matsuo [37] extended the previous approach to the spatial structure of a
Cooper pair composed by two neutrons in superfluid low-density uniform matter. In this work, the
author used two parametrizations of the BCS-BEC crossover, which serve to track the evolution
of the system from the BCS to the BEC regime. These two parameters are the ratios ∆F/εF and,
as stated before, ξRMS/d where ∆F and εF are respectively the gap and the single particle energy
evaluated at the Fermi surface, d = ρ

−1/3
n is the average distance between members of the Cooper

pair and ξRMS =
√
〈r2〉 is its root mean square radius of the Cooper pair. From a qualitative point

of view, in the BEC regime the Cooper pair will be strongly bound (∆F � εF ) and the distance
between the nucleons forming the pair will be small as compared with the average neutron dis-
tance (ξRMS � d and P(d) ≈ 1). The suggested values [37], as derived with a contact interaction
Hamiltonian in the 1S0 channel, are listed in Tab. 1.

BCS BEC
∆F/εF 0.21 1.33
ξRMS/d 1.1 0.19

Table 1: Reference values for 1/kF a and ξRMS/d characterizing the smooth crossover between the BCS and
the BEC phase, as suggested in Ref. [37] using a regularized δ interaction model.

As shown by Matsuo [37] the spatial behaviour of the neutron Cooper pair varies strongly
with the Fermi momentum kF , in particular the ρ(r) profile shows strong variations. The weak-
coupling limit is known to lead to an exponential falloff convoluted with an oscillation, suggesting
a large correlation length. On the other hand, a pronounced peak with small oscillations could be
interpreted as a signature of a transition to a different regime, i.e. of the BCS-BEC crossover. Using
phenomenological pairing interactions, Matsuo [37] suggested that over a wide range of densities
(ρ/ρ0 ' 10−4−0.5) in the singlet channel the spatial dineutron correlation is strong and a possible
crossover region could be found in the density range ρ/ρ0 ' 10−4−10−1.
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(500 MeV cutoff)

(b)

(a)

(c)

dineutron deuteron

Figure 7: (a) Probability density ρ as function of the coordinate r and Fermi momentum kF . (b) Snapshots
of ρ(r) for some selected values of kF . (c) For dineutrons in the 1S0 channel, we plot the ratios ∆F/εF (upper
panel) and ξRMS/d (lower panel) as functions of the Fermi momentum. The reference values characterizing
the BCS-BEC crossover (see Tab. 1) define the coloured areas. In last panel, all calculations have been
performed with three cutoffs: 450, 500 and 600 MeV. The cutoff dependence is practically negligible.

In Fig. 7 (a) we show the probability density ρ as a function of the distance variable r and
Fermi momentum kF for dineutrons in neutron matter and for deuterons in symmetric nuclear
matter. For the sake of clarity we also show ρ(r) for a few selected values of kF in the graphs
labelled by (b). Results of Refs. [37] are substantially confirmed: we found that the profile of the
dineutron probability density changes significantly with the density. At relatively small densities
(kF < 0.8 fm−1) the system is situated in a crossover region, while at higher densities it enters the
pure BCS region. The same conclusions can be obtained by observing that, at small densities, the
size of the neutron Cooper pairs is small if compared with the average nucleon density, as can
be seen in Fig. 7 (c): while for kF < 0.8 fm−1 the pair is very compact, at higher densities the
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probability to find the nucleons at great distances increases.
For deuterons, our results seem to support the previous indication [14] that the Cooper pair

wave function merges smoothly into a "deuteron-like" wavefunction as density decreases (kF <

1.0 fm−1 in our case).
Of course, the preceding results represent only a very preliminary analysis that needs to be

refined and improved, i.e. including three-body forces and self-energy effects.
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