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1. Introduction

It is strongly believed that media around pulsars are efficiently perturbed by their powerful
high energy emission, which in turn is directly related to the neutron star’s rotation. The total
energy of these objects can provide isWtot = IΩ2/2, whereI = 2MR2

?/5 is pulsar’s moment of
inertia,M ≈ 1.5×M¯ andR? ≈ 106cm are pulsar’s mass and radius respectively,M¯ ≈ 2×1033g
is the solar mass,Ω = 2π/P is the angular velocity of rotation andP is the corresponding period. It
is evident that the rotational energy budget of the pulsar increases for rapidly rotating objects and
for millisecond pulsars this might become very large. Indeed, by applying the typical parameters
of millisecond pulsars, one can see that this energy is of the order of

Wtot ≈ 2.4×1052×
(

P
0.01s

)−2

×
(

M
1.5M¯

)
ergs. (1.1)

As we see, if even a tiny fraction ofWtot is transformed into radiation, its role might be significant.
It is well known from observations that all pulsars slows down, which in turn means that their

released rotational energy can strongly influence their overall emission pattern. The corresponding
parameter is called the slow down rateṖ≡ dP/dt < 0. It is straightforward to estimate the energy
released in unit of time (slow-down luminosity)Lsd≡Ẇtot = IΩ|Ω̇|, whereΩ̇≡ dΩ/dt =−2πṖ/P2

Lsd≈ 9.5×1038×
(

P
0.01s

)−3

×
(

Ṗ
10−13ss−1

)
×

(
M

1.5M¯

)
ergss−1. (1.2)

As we see, even if a tiny fraction of this huge amount of power transforms into that of emission
one might have interesting consequences. It is commonly assumed that on average only1% of
rotational energy is converted to radiation, therefore its luminosity is given by

L≈ 9.5×1036×
( κ

0.01

)
×

(
P

0.01s

)−3

×
(

Ṗ
10−13ss−1

)
×

(
M

1.5M¯

)
ergss−1. (1.3)

where we have taken into account the expression for the bolometric luminosityL≈ κLsd, whereκ
is the fraction of the rotational energy that is converted into radiation. Such a huge radiation power
will inevitably undergo the overall pattern around a pulsar and since the radiated energy is very
high such a pattern probably might be seen also on distant regions from the central object - thus in
the nebular structure.

Apart from the astrophysical example of pulsars discussed above, it is clear that similar physics
is encountered in the interactions of strong electromagnetic pulses with plasma in laboratory. In
particular, Tajima & Dawson [1] considered short laser radiation and its effect on plasmas. The
authors examined radiation with power density of the order of1018W/cm2 irradiating a plasma with
particle number densities of the order of1018cm−3 [1]. The group velocity of the electromagnetic
radiation is given by

υEM
g = c

(
1− ω2

p

ω2

)1/2

< c, (1.4)

whereωp ≡
√

4πn0e2/m is the plasma frequency,n0 is the number density of plasma particles,e
andmare respectively the charge and mass of an electron andω is the photon frequency. According
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to Ref. [1] the interaction of the radiation with the group velocity (1.4) with plasma creates a
wakefield with the phase velocity

υp =
ωp

kp
= υEM

g , (1.5)

wherekp is the wave-number of the plasmon. From Eq. (1.5) it is evident that the Lorentz factor
of the plasmon is of the order ofγ ≈ ω/ωp, which, as we will see later, could be very large in
the realistic astrophysical scenarios. As explained in Ref. [1] the electromagnetic waves lead to
transverse oscillations of electrons. In the nonrelativistic limit the corresponding average energy of
oscillations might be estimated as to be

〈∆WT〉 ≈ e2

2mω2〈E2
y 〉, (1.6)

whereEy is the transverse component of the electric field. The momentum the electrons pick up is
of the order of [1]

〈∆px〉 ≈ 〈∆WT〉
c

. (1.7)

During the time duration of the pulse,τ , the electrons are displaced by the lengthscale∆x= 〈∆υxτ〉.
After passing the pulse the charge separation pulls the electrons back and as a result the plasma
oscillations are generated. Due to propagation of the excited wakefield the electrons are trapped
and accelerated. In the rest frame of plasmons the electrons gain energy,W≈ eϕ, which in the lab
frame transforms to [1]

Wmax≈ 2γ2ϕ , (1.8)

whereϕ is the potential in the wake. From Eq. (1.8) it is evident that the wakefield might ef-
ficiently accelerate particles. The authors of Ref. [1] have shown that short duration pulses of
electromagnetic radiation might efficiently induce the Langmuir waves.

On the other hand, unlike the laboratory processes, in astrophysical situations radiation of
astrophysical sources is characterized by a broad band emission. Despite this difference the major
mechanism of wakefield generation still works, because during the interaction of very high energy
radiation with plasma particles the ions and lighter electrons behave differently. This difference
will inevitably lead to charge separation creating an electrostatic field, which in turn will act on
the particles. The interaction of high intensity (of the order of1027ergs cm−2s−1) radiation with
plasmas having densityn has been studied by Zampieri et al. [2]. To study the interaction of high
energy radiation with the plasma particles the authors considered the following equations

γe
d
dt

(γemeυe) = −γeZeE+Frad, (1.9)

γi
d
dt

(γimiυi) = γiZeE, (1.10)

where byγe andme denote the Lorentz factor and mass of electrons andγi andmi are the same
quantities for ions,υe,i are their velocities,Z is the atomic number of ions,E is the induced electric
field and

Frad =−
∫ ε1µ1− εµ

c
γe

(
1− υe

c
µ
) Iε

ε
dσ
dΩs

dεdΩdΩs, (1.11)
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is the radiative force acting on electrons,Iε is the specific intensity of radiation,Ω denotes the
solid angle subtended by the astrophysical source andΩs is the solid angle over the scattering
angle,ε andε1 are the energies of photons in the laboratory frame (LF) of reference,µ (µ1) are
cosines of angles between radial and incident directions respectively anddσ/dΩ is the Klein-
Nishina differential cross section [8]. By applying the Gauss’s law,E = 4πZen∆x, wheren is the
number density of charges and∆x = re− r i is the charge separation the authors reduce the system
of equations (1.9)-(1.11) to

d2xe

dt2
=−4πZ2e2n

me
∆x+

σTF
mec

, (1.12)

d2xi

dt2
=

4πZ2e2n
mi

∆x, (1.13)

whereF ≡ L/4πr2
e is the radiation intensity andσT ≈ 6.65× 10−25cm2 is the Thomson cross

section. By solving and analyzing these equations the authors have argued that radiation-
induced electric field might efficiently influence the maximum energy of plasma particles.

The generation of wakefield has been considered in a series of works. Gorbunov & Kirsanov
[3] have examined the nonlinear excitation of longitudinal electrostatic waves in plasmas. These
authors studied a set of equations governing the process of wakefield excitation by applying the
hydrodynamic equation

∂ p⊥
∂ t

+υ
∂ p⊥
∂x

= eE− e
c

υ‖B (1.14)

and two Maxwell’s equations

∂E
∂x

= −1
c

∂B
∂ t

, (1.15)

∂B
∂x

= −1
c

∂E
∂ t

+
4πe

c
nυ⊥, (1.16)

whereυ⊥ andυ‖ are the transverse and longitudinal velocity components of electrons andp⊥ is
the corresponding transverse component of momentum. Assuming that the transverse velocity is
given by

υ⊥(x, t) =
1
2

[
a(χ)e−iωt+ikx +a∗(χ)eiωt−ikx

]
, (1.17)

where the dispersion relation isω2 = k2c2 +ω2
p andχ = x−υgt, whereυg is the group velocity of

the wave, the authors find from Eqs. (1.14)-(1.17) the following low frequency perturbation

δn0

n0
=

1
4υ2

g

(
1−2sin2

[
kp

(
χ
2
− L

4

)])
, (1.18)

for L/2 > χ >−L/2 and
δn0

n0
=

1
2υ2

g
sin(kpχ)sin

(
kpL
2

)
, (1.19)

for χ <−L/2, wherekp = ωp/υg. On the basis of these results Gorbunov & Kirsanov [3] showed
that the wakefield excited behind the packet can strongly affect particle acceleration. They argued
that particles injected into the plasma are accelerated quite efficiently. The change in the sign of
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electric field leads to a deceleration phase. The overall effect is that the electrons trapped in the
wakefield region have maximal energy given by

εmax= ε0γ
eE

meωpc

(
1+

[
1+

2mekp

eEγ

]1/2
)

, (1.20)

whereε0 is the initial energy of electrons,e is the elementary charge.
In Ref. [4] the authors have examined the case of relativistic intense pulse. To study the

role of linearly polarized electromagnetic waves on the ambient plasma these authors considered
the equation governing the evolution of a dimensionless vector potential,A≡ p⊥/mc, describing
the pulseA = 0.5[a(χ, t)exp(−eω0t + ik0x)+ c.c.], wherek0 is the wave vector of radiation and
ω2

0 = k2
oc2−ω2

p, χ = x−υgt, υg = c2k0/ω0. This equation, given by Ref. [4], reads

2iω0
∂a
∂ t

+
ω2

p

ω2
0

c2 ∂ 2a
∂ χ2 +2υg

∂a
∂ t∂ χ

= −ω2
p

ψ0

1+ψ0
a, (1.21)

d2ψ0

dχ2 −k2
p
1+ |a|2/2− (1+ψ0)

2

2(1+ψ0)
2 = 0, (1.22)

where, as above,kp = ωp/υg andψ0 is the low frequency component of the potential. A laser
pulse with a wavelength of the order of10µm and intensity1017W/cm2 having an edge length of
0.1ps was considered. Using Eqs. (1.21) and (1.22) it was shown that the pulse will accelerate the
electrons up to eneregies1 GeV over a distance50cm in a plasma medium with number density of
the order of1015cm−3.

The problem of generation of wakefield has been examined by Berezhiani & Murusidze in
Ref. [5] . To address this problem the authors used the Maxwell’s equations in combination with
the equations of motion and derived the following equation for electron momentum

∂ 2p
∂ t2 −∆p+∇(∇ · p)+

∂
∂ t

∇
√

1+ p2 +
p√

1+ p2

[
1+∂ (∇ · p)/∂ t +∆

√
1+ p2

]
= 0, (1.23)

which for the transparent plasma medium reduces to

d2y
dx2 =

1
2

(
γ2
⊥

y2 −1

)
, (1.24)

whereγ2
⊥ = 1+ p⊥, x = kp(z−ct), y =

√
γ2
⊥+ p2

‖− p‖ = 1+ Φ andΦ ≈ eΦ/mc2 is the dimen-

sionless potential. By analyzing Eq. (1.24) it was shown that the maximum increase of energy of
trapped electrons is given by

∆E = 2γ2
gmc2∆Φmax, (1.25)

whereγg =
(
1−υ2

g/c2
)−1/2

. Therefore, Berezhiani & Murusidze [5] have shown that longitudinal
oscillations with relativistic phase velocities lead to the excitation of the wakefield.

Finally, we note that Sprangle et al. [6] developed a nonlinear theory of laser-plasma interac-
tions and studied the relativistic optical guiding, nonlinear excitation of wakefields and generation
of coherent harmonic radiation.
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In this paper we consider the possibility of excitation of wakefields via the interaction of the
pulsar high energy emission with plasma surrounding the pulsar. Generally speaking, pulsars are
emitting in narrow channels, which in turn are rotating. Therefore any irradiated area surrounding
the pulsar experiences the radiation pressure periodically, which can lead to generation of wake-
fields.

The structure of the paper is as follows. In Sec. II we develop an analytical method for
studying the generation of wakefields in media, periodically irradiated by the pulsar’s high-energy
emission. In Sec. III we present our results and summarize them in the Sec. IV.

2. Theoretical background

In this section we consider the set of equations which govern the generation of wakefields. In
the framework of our model this structure is formed due to the high-energy radiation pressure of a
pulsar. On the other hand this pressure is created by means of the Compton interaction of radiation
photons and electrons in the medium surrounding the neutron star. The corresponding energy of
scattered electrons has the following form (see Ref. [7])

ε ′1 =
ε ′

1+(ε ′/mc2)(1−cosχ ′)
, (2.1)

whereε ′ andε ′1 are the photon energies before and after scattering respectively in the rest frame
of the electron,m is its mass,c is the speed of light andχ ′ is the angle between the incident and
scattered photon directions.

In the framework of the Thomson scattering,ε ′1 ≈ ε ′, Eq. (1.11) reduces to [2]

Frad = σT
F
c

, (2.2)

whereF is given by

F =
∫

Iε µdεdΩ =
L

4πr2(1−cos[θ/2])
, (2.3)

where it has been taken into account that each radiation channel carries half of the luminosity.
The corresponding solid angle of the cone is2π (1−cos[θ/2]) andθ is the opening angle of the
radiation cone.

The system of equations governing the generation of wakefields consists of the momentum
equation [3]

∂υ‖

∂ t
+υ‖

∂υ‖

∂x
=− e

m
∂ϕ
∂x

+ frad, (2.4)

the continuity equation
∂n
∂ t

+
∂
∂x

(
nυ‖

)
= 0, (2.5)

and the Poisson equation
∂ 2ϕ
∂x2 =−4πe(n−n0) , (2.6)

whereυ‖ is the velocity component parallel to thex-axis,ϕ denotes the charge separation potential,
frad = Frad/m, n is the electron’s number density andn0 is the unperturbed number density.

6



P
o
S
(
M
P
C
S
2
0
1
5
)
0
1
5

Wakefield generation Zaza Osmanov

We solve the problem of generation of the wakefield by linearizing the governing equations,
which might be easily reduced to

∂ 2δn
∂ t2 +ω2

pδn =−n0
∂ frad

∂x
, (2.7)

where byδn we denote the density perturbation.
Since the excited modes are traveling waves it is convenient to introduce the variableξ ≡

x−ct, which leads to the following form of the poisson equation

∂ 2ϕ
∂ξ 2 =−4πeδn. (2.8)

By applying this expression to Eq. (2.7) one gets

∂ 4ϕ
∂ξ 4 +

ω2
p

c2

∂ 2ϕ
∂ξ 2 =

mω2
p

ec2

∂ frad

∂ξ
, (2.9)

which straightforwardly can be reduced to

∂ 2ϕ
∂ξ 2 +

ω2
p

c2 ϕ =
mω2

p

ec2

∫
frad(ξ )dξ . (2.10)

By assuming thatfrad(ξ ) is a step-like function, the solution of Eq. (2.10) can be expressed as
follows

ϕ(β ) =
m frad,0ξ0

e

[
1− sinα

α
cos(α{β −1})− 1−cosα

α
sin(α{β −1})

]
, (2.11)

where frad,0 is the radiation reaction force,ξ0 = cθ/Ω, α = ωpξ0/c andβ = ξ/ξ0.

3. Discussion

We now examine generation of wakefields inside the nebula around a pulsar. For this purpose
we consider the Crab nebula parameters: massMNb ∼ 4M¯ (see Ref. [9]) and radiusRNb ∼ 1.7pc,
which thus define the average number density of matternNb ∼ 3MNb/4πR3

Nb
∼ 8 cm−3. We will

assume below that escaping particles do not change the average density of the Crab nebula. The
Goldreich-Julian number density is given by [10]

nGJ =
ΩBst

2πec
×

(
R?

r

)3

, (3.1)

whereB? ≈ 1.8× 1012×
√

PṖG is the surface magnetic field of the pulsar. On the other hand,
outside the rotationally driven region (magnetosphere) the behaviour of magnetic field is1/r (see
Ref. [11]), which leads to the following condition

r À 1.2×10−6×
(

P
0.01s

)−5/2

×
(

Ṗ
10−13ss−1

)1/2

×
(

R?

106cm

)3

×
( nNb

10cm−3

)−1
AU (3.2)
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It is clear that the effect we are interested in strongly depends on the luminosity of a pulsar. In
general there is a special class of pulsars, the so calledX-ray pulsars, which exhibit extremely high
values of luminosity. It is believed that their emission has a synchrotron origin. This process is
maintained due to the quasi-linear diffusion (see Ref. [12]), when the opening angle of a radiation
cone is expressed as [13]

θ ≈ 0.14×
(

0.01s
P

)1/2

×
(

R?

106cm

)1/2

rad. (3.3)

If the electrons are trapped inside the wakefield, they will inevitably experience the potential dif-
ference [see Eqs. (2.2),(2.3),(1.3) and (3.3)]

ε(eV) ≈ 5.4×
( κ

0.01

)
×

(
P

0.01s

)−5/2

×
(

Ṗ
10−13ss−1

)

×
(

M
1.5M¯

)
×

(
R?

106cm

)−1/2

×
( r

0.01AU

)−2
. (3.4)

It is seen that, for example, on distances0.01AU from the Crab pulsar the potential difference will
be of the order of4 eV; for r ∼ 0.001AU we find ε(eV)∼ 0.4 keV.

Since the most energetic pulsars are the so called newly born young millisecond pulsars [14],
it is interesting to estimate the wakefield generation for this particular class of pulsars too. By
consideringP∼ 0.001s andṖ∼ 10−12ss−1 one can show that for0.01AU the potential difference
will be ∼ 2 keV.

4. Summary

1. We have examined the excitation of wakefield in the media surrounding a pulsar. The prob-
lem has been studied in a one dimensional approximation, assuming that the particles follow
along the magnetic field lines. Therefore, we started from the one-dimensional form of the
momentum equation, the continuity equation and the Poisson equation, linearized them, and
solved the resulting equations in the case where the radiation force has a simple step-like
form.

2. The model has been applied to the Crab-like pulsars and the newly born young millisecond
pulsars. It was shown that in case of the Crab-like pulsars, trapped electrons will be subject
to the potential difference of the order of0.4 keV, whereas for the newly born pulsars this
value can be even higher, of the order2 keV.
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