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1. Introduction

It is strongly believed that media around pulsars are efficiently perturbed by their powerful
high energy emission, which in turn is directly related to the neutron star’s rotation. The total
energy of these objects can providéNg: = 1Q?/2, wherel = 2MR2/5 is pulsar's moment of
inertia,M ~ 1.5 x M, andR, ~ 10°cm are pulsar’'s mass and radius respectiwdly,~ 2 x 10°g
is the solar mass) = 271/P is the angular velocity of rotation arirlis the corresponding period. It
is evident that the rotational energy budget of the pulsar increases for rapidly rotating objects and
for millisecond pulsars this might become very large. Indeed, by applying the typical parameters
of millisecond pulsars, one can see that this energy is of the order of

. (PN’ M
WOI ~24x1 X m X m ergs (11)

As we see, if even a tiny fraction 8, is transformed into radiation, its role might be significant.

It is well known from observations that all pulsars slows down, which in turn means that their
released rotational energy can strongly influence their overall emission pattern. The corresponding
parameter is called the slow down réte= dP/dt < 0. It is straightforward to estimate the energy
released in unit of time (slow-down luminositydy =Wt = 1 Q|Q|, whereQ = dQ/dt = — 2P/ P2

Lsg~ 9.5x 10°8 x P 73>< i X M ergss? (1.2)
sd™ % 0.01s 10 5ss1) “\15Mm, ) ©9%% '

As we see, even if a tiny fraction of this huge amount of power transforms into that of emission
one might have interesting consequences. It is commonly assumed that on averaty arfly
rotational energy is converted to radiation, therefore its luminosity is given by

K P -3 P M
L~95 1036 — - ,1. 13
8 . (0.0l) . <O.015> % <1o—1355—1> X <1.5M®) ergss (1.3)

where we have taken into account the expression for the bolometric lumihositl g4, wherek

is the fraction of the rotational energy that is converted into radiation. Such a huge radiation power
will inevitably undergo the overall pattern around a pulsar and since the radiated energy is very
high such a pattern probably might be seen also on distant regions from the central object - thus in
the nebular structure.

Apart from the astrophysical example of pulsars discussed above, it is clear that similar physics
is encountered in the interactions of strong electromagnetic pulses with plasma in laboratory. In
particular, Tajima & Dawsonl]] considered short laser radiation and its effect on plasmas. The
authors examined radiation with power density of the ord@0&w/cn? irradiating a plasma with
particle number densities of the orderif®cm3 [1]. The group velocity of the electromagnetic

radiation is given by
w2 1/2
vEM=c (1— p) <, (1.4)

w?

wherew, = \/4mmee?/m s the plasma frequencyy is the number density of plasma particles,
andmare respectively the charge and mass of an electrowasthe photon frequency. According
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to Ref. [1] the interaction of the radiation with the group velocit.4) with plasma creates a
wakefield with the phase velocity
O‘)p EM (15)

= k7p = Ug ,
wherek; is the wave-number of the plasmon. From EQZ) it is evident that the Lorentz factor

of the plasmon is of the order ¢f~ w/wyp, which, as we will see later, could be very large in

the realistic astrophysical scenarios. As explained in Réfthle electromagnetic waves lead to
transverse oscillations of electrons. In the nonrelativistic limit the corresponding average energy of
oscillations might be estimated as to be

Up

€ 2

OW) ~ = (ED), (16)

whereE, is the transverse component of the electric field. The momentum the electrons pick up is
of the order of1]

(Apy) ~ <A\2h> a.7)

During the time duration of the pulse, the electrons are displaced by the lengthsaale (AuxT).

After passing the pulse the charge separation pulls the electrons back and as a result the plasma
oscillations are generated. Due to propagation of the excited wakefield the electrons are trapped
and accelerated. In the rest frame of plasmons the electrons gain éiexgsg, which in the lab

frame transforms tol]

Whax 2y°9), (1.8)

where ¢ is the potential in the wake. From Eql.§) it is evident that the wakefield might ef-
ficiently accelerate particles. The authors of Ré&}.Have shown that short duration pulses of
electromagnetic radiation might efficiently induce the Langmuir waves.

On the other hand, unlike the laboratory processes, in astrophysical situations radiation of
astrophysical sources is characterized by a broad band emission. Despite this difference the major
mechanism of wakefield generation still works, because during the interaction of very high energy
radiation with plasma particles the ions and lighter electrons behave differently. This difference
will inevitably lead to charge separation creating an electrostatic field, which in turn will act on
the particles. The interaction of high intensity (of the orded@¥’ergs cn2s~1) radiation with
plasmas having densityhas been studied by Zampieri et #)].[ To study the interaction of high
energy radiation with the plasma particles the authors considered the following equations

d

Vet (YeMeUe) = —YeZEE+ Fag, (1.9)
d

wa(v.mui) = yZeE (1.10)

where byy. andme denote the Lorentz factor and mass of electrons yaahd m; are the same
quantities for ionsye; are their velocitiesZ is the atomic number of iong is the induced electric
field and

11— € U le do
Frog— —/w% (1- f“) < o-dedQdas, (1.11)
S
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is the radiative force acting on electrong,is the specific intensity of radiatio) denotes the
solid angle subtended by the astrophysical source(anis the solid angle over the scattering
angle,e ande¢; are the energies of photons in the laboratory frame (LF) of refergn€g;) are
cosines of angles between radial and incident directions respectiveld@dl is the Klein-
Nishina differential cross sectioB][ By applying the Gauss’s lavE = 4riZem\x, wheren is the
number density of charges afd = ro —r; is the charge separation the authors reduce the system
of equations1.9)-(1.11) to
d?xe _ 74n22e2nAX+ orF
dt2 Me MeC
d?  4nZ%en
diz2  m

, (1.12)

AX, (1.13)

whereF = L/4m? is the radiation intensity andr ~ 6.65x 10~2°cn? is the Thomson cross
section. By solving and analyzing these equations the authors have argued that radiation-
induced electric field might efficiently influence the maximum energy of plasma patrticles.

The generation of wakefield has been considered in a series of works. Gorbunov & Kirsanov
[3] have examined the nonlinear excitation of longitudinal electrostatic waves in plasmas. These
authors studied a set of equations governing the process of wakefield excitation by applying the
hydrodynamic equation

opL , OpL _ e
and two Maxwell’'s equations
JE 10B
% oot (1.15)
0B 10E A4me
& = _EH—FTnUL, (116)

whereu; andu are the transverse and longitudinal velocity components of electronp arel
the corresponding transverse component of momentum. Assuming that the transverse velocity is

given by
0. (1) = 5 [alxe R ar (nd ], 1.17)
where the dispersion relationds® = k’c? + wg andx = x— ugt, whereuy is the group velocity of

the wave, the authors find from Eq4.14-(1.17) the following low frequency perturbation

ong B 1 . X L
o " 402 (1 2sirf [kp <2 4)}) , (1.18)
forL/2> x> —L/2and
o Z—U§S|n(kpx)3|n (2> , (1.19)

for x < —L/2, wherek, = wp/Ug. On the basis of these results Gorbunov & Kirsar@jshowed
that the wakefield excited behind the packet can strongly affect particle acceleration. They argued
that particles injected into the plasma are accelerated quite efficiently. The change in the sign of
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electric field leads to a deceleration phase. The overall effect is that the electrons trapped in the
wakefield region have maximal energy given by

1/2
E <1+ {1+2m°kp} : ) , (1.20)
c eky
whereg is the initial energy of electrons,is the elementary charge.
In Ref. [4] the authors have examined the case of relativistic intense pulse. To study the
role of linearly polarized electromagnetic waves on the ambient plasma these authors considered
the equation governing the evolution of a dimensionless vector poteAtialp, /m¢ describing

the pulseA = 0.5[a(x,t) exp(—ewot + ikoX) + c.c.], whereky is the wave vector of radiation and
wp = k3c? — oog X = X— Ugt, Ug = C?ko/ . This equation, given by Ref4], reads

Emax= &Y
ax— €0

. da W ,0% da Wo

2icy— + —2c? 2 = —? 1.21
"o Tt axz T Matay T T PTi g (1.21)
d2wo_k21+\ay2/2—(1+wo)2

dy2 P 2(1+ yp)?

~0, (1.22)

where, as abovek, = wp/Ug and Y is the low frequency component of the potential. A laser
pulse with a wavelength of the order bdum and intensityl 0t“W/cn? having an edge length of
0.1ps was considered. Using Eg&.21) and (.22) it was shown that the pulse will accelerate the
electrons up to eneregiésseV over a distancB0cm in a plasma medium with number density of
the order ofl0*®cm~3,

The problem of generation of wakefield has been examined by Berezhiani & Murusidze in
Ref. [5] . To address this problem the authors used the Maxwell's equations in combination with
the equations of motion and derived the following equation for electron momentum

9%p 9 >, P 5] _
2% ~0p+0(0-p)+ 2 0V1+p —l—m[l—i—d(ﬂ-p)/dt—i—m/l—i—p]—O, (1.23)

which for the transparent plasma medium reduces to

d’y 1(‘& 1), (1.24)

a2 2\y?

wherey? =14 p;, x=Kp(z—ct), y=,/y? + pﬁ— pj=1+® and® ~ ed/mc is the dimen-
sionless potential. By analyzing Ed..24) it was shown that the maximum increase of energy of
trapped electrons is given by

AE = 2)EmCAD (1.25)

whereyy = (1— ué/cz)_l/z. Therefore, Berezhiani & Murusidzé&][have shown that longitudinal
oscillations with relativistic phase velocities lead to the excitation of the wakefield.

Finally, we note that Sprangle et 8] [developed a nonlinear theory of laser-plasma interac-
tions and studied the relativistic optical guiding, nonlinear excitation of wakefields and generation
of coherent harmonic radiation.



Wakefield generation Zaza Osmanov

In this paper we consider the possibility of excitation of wakefields via the interaction of the
pulsar high energy emission with plasma surrounding the pulsar. Generally speaking, pulsars are
emitting in narrow channels, which in turn are rotating. Therefore any irradiated area surrounding
the pulsar experiences the radiation pressure periodically, which can lead to generation of wake-
fields.

The structure of the paper is as follows. In Sec. Il we develop an analytical method for
studying the generation of wakefields in media, periodically irradiated by the pulsar’s high-energy
emission. In Sec. Il we present our results and summarize them in the Sec. IV.

2. Theoretical background

In this section we consider the set of equations which govern the generation of wakefields. In
the framework of our model this structure is formed due to the high-energy radiation pressure of a
pulsar. On the other hand this pressure is created by means of the Compton interaction of radiation
photons and electrons in the medium surrounding the neutron star. The corresponding energy of
scattered electrons has the following form (see R&j. [

’ g
o= 17 (&/m@) (1—cosy’)’

(2.1)

wheree’ andg] are the photon energies before and after scattering respectively in the rest frame
of the electronmiis its massg is the speed of light ang’ is the angle between the incident and
scattered photon directions.

In the framework of the Thomson scatterimg~ €', Eq. (1.11) reduces toZ]

F
F..= GTE, (2.2)
whereF is given by
: L
= / lepdedQ = 4mr2(1—cos[6/2])’ (2:3)

where it has been taken into account that each radiation channel carries half of the luminosity.
The corresponding solid angle of the con@is(1— cos[6/2]) and 6 is the opening angle of the
radiation cone.

The system of equations governing the generation of wakefields consists of the momentum

equation 8]
ov, ou,  ed¢

Tt TV T Tmoax e (24)
the continuity equation 5 5
n
=+ 3 (nUH) —0, (2.5)
and the Poisson equation
ﬂf—4rre(n—n ) (2.6)
axz - 0)> .

whereu, is the velocity component parallel to tkeaxis, ¢ denotes the charge separation potential,
frad = Frag/m, nis the electron’s number density anglis the unperturbed number density.
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We solve the problem of generation of the wakefield by linearizing the governing equations,
which might be easily reduced to

oz TN =Mo"

(2.7

where bydn we denote the density perturbation.
Since the excited modes are traveling waves it is convenient to introduce the vdriable
X — ct, which leads to the following form of the poisson equation

‘;if; — 475N, (2.8)

By applying this expression to E2.[7) one gets

0%  WhA%p MW O fiag

et @952~ e@ oF (2:9)
which straightforwardly can be reduced to
92 maw;
79+ D= [t 210

By assuming thaff;4(¢) is a step-like function, the solution of E(2.L() can be expressed as
follows

mfra:o«fo 1—Si2“ cos(a{B—1})— ZOS" sin(a{B -1}/, (2.11)

¢(B) =

wherefaqo is the radiation reaction forcég = c0/Q, a = wpéo/candpf = & /&o.

3. Discussion

We now examine generation of wakefields inside the nebula around a pulsar. For this purpose
we consider the Crab nebula parameters: mggs~ 4M., (see Ref.|9]) and radiusk , ~ 1.7pc,
which thus define the average number density of matter 3M,, /43 ~ 8 cm=3. We will
assume below that escaping particles do not change the average density of the Crab nebula. The
Goldreich-Julian number density is given [R0]

3
ey = ot <R*>, (3.1)

211ec r

whereB, ~ 1.8 x 10*2 x vPPG is the surface magnetic field of the pulsar. On the other hand,
outside the rotationally driven region (magnetosphere) the behaviour of magnetic figid(&ee
Ref. [11]), which leads to the following condition

p 5/2 B 1/2 R \3 n 1
—6 Nb
r>12x107x <0.0l’s> . <l(fl3ssl> % <106cm> % (1Ocrrr3) AU (32)
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Itis clear that the effect we are interested in strongly depends on the luminosity of a pulsar. In
general there is a special class of pulsars, the so cdHexy pulsars, which exhibit extremely high
values of luminosity. It is believed that their emission has a synchrotron origin. This process is
maintained due to the quasi-linear diffusion (see REZ])[ when the opening angle of a radiation
cone is expressed &kJ]

1/2 1/2
6 ~0.14x <0CF))15> X <1(§;m> rad (3.3)

If the electrons are trapped inside the wakefield, they will inevitably experience the potential dif-
ference [see Eqs2(2),(2.3),(1.3) and B.3)]

K P\ %2 P
£(8V) ~ 5.4x (0.01> x <0.0ls> x (1&13391)

M R. —1/2 r -2
: <1-5M<.>> ) <1O6c:m> 8 (0.01AU> ' (34)

Itis seen that, for example, on distan€31 AU from the Crab pulsar the potential difference will
be of the order o# eV; forr ~ 0.001AU we find (eV) ~ 0.4 keV.
Since the most energetic pulsars are the so called newly born young millisecond piidkars [
it is interesting to estimate the wakefield generation for this particular class of pulsars too. By
considering® ~ 0.001s andP ~ 10~ 12ss™! one can show that fd@.01 AU the potential difference
will be ~ 2 keV.

4. Summary

1. We have examined the excitation of wakefield in the media surrounding a pulsar. The prob-
lem has been studied in a one dimensional approximation, assuming that the particles follow
along the magnetic field lines. Therefore, we started from the one-dimensional form of the
momentum equation, the continuity equation and the Poisson equation, linearized them, and
solved the resulting equations in the case where the radiation force has a simple step-like
form.

2. The model has been applied to the Crab-like pulsars and the newly born young millisecond
pulsars. It was shown that in case of the Crab-like pulsars, trapped electrons will be subject
to the potential difference of the order @4 keV, whereas for the newly born pulsars this
value can be even higher, of the or@dteV.
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