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1. Introduction

One of the main challenges in modern astrophysics concerns the equatitaieofEoS) of
neutron stars (NSs). Recent observations point ot to 2M;, [1, 2] objects preferring therefore
stiff nuclear EoS. However, it is worth noting that this latter conclusion is valid iortlye general
relativity (GR) domain.

Another important property of NSs is the stellar radRisThe mass-radiugV — R) diagram
has become a comprehensive tool for matching theoretical predictionsdéovations. Modifica-
tions of GR can produce shifts in the trajectories alonghthe R diagram but sometimes higher
masses are achieved at the price of having undesirable larger rafijlgations. The current ra-
dius determination is not so precise as in the mass case but future satellitdaedlivpry precise
constraints on botM andR for the same object. As specific examples one can cite The Neutron
star Interior Composition Explorer (NICER) mission and the SKA radio ptojec

Although GR is a very well tested theory and its predictions have been wmdfiwith solar
system and binary pulsars observations the cosmological arena stillngjesdl&. Actually, by
adopting GR we are left with the strong indication tha®5% of the energy budget of the universe
is unknown. According to the most recent observations, this fractiorvidedl into the probably
fraction of ~ 25% for dark matter and 70% for dark energy.

One possible solution relies in modifying GR on large (cosmological) scalegefdgcing
either dark matter or the dark energy component by some extended tHegngvity (ETG) the
already confirmed predictions of GR should be reconquered. Thighapysually via the inclusion
of screening mechanisms around an astrophysical environment wieeS @& predictions suffer
a metamorphopsia back to the GR ones. If this is actually the case, it is tleefoected that
the NS interior and its habitat remains described by GR. However, the i$&soffor constraining
ETGs has become a fruitful route of investigation. See [3] for a fewtaeerks on this topic.

The first usual procedure is to compute the analogue of the Tolman-Ogiperk\Volkoff
(TOV) equation [4, 5]—the GR structure for static and spherical objefasyour favorite ETG.
In general, departures from the standard TOV equation are nonktrivgavever, it can be useful
to understand how masses and radii of NSs are shifted iiMtheR plane according to specific
changes in the TOV structure. In this sense, a recent and interestikg&yqroposed a “Post-
TOV” formalism based on the parametrized post-Newtonian theory in whiohG#® effects can
be separately studied in relativistic stars. We also point out the analyssimétef. [7] in which
the specific pressure contribution to the active gravitational mass in NSglissin detail.

Our aim in this contribution is to propose a free parametrization for the TO¥tequ The
curious reader can go directly to Eqgs. (3.1) and (3.2). In some seissis, din extension of [7]. Our
approach should be seen as a pedagogical guide to understand thlayetkby different physical
contributions to the TOV equation rather than new a ETG.

In the next section we review a quick derivation of the TOV equation. Setipresents our
free parametrization for stellar equilibrium equations. We will adopt onléstigaEoS for the NS
interior and show in section 4 results on tfle- R plane when varying such new parameters. In the
final section we discuss in more detail the role played by each parameteisat/e- 7 = 1 units.
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2. The Tolman-Oppenheimer-Volkoff equation

In this section we review the derivation of the TOV equation which can badan most
textbooks about GR or relativistic astrophysics.

The first and simplest step in studying stellar objects is to consider that matpdrescally
symmetric distributed in a static geometry i.e., time reversal about any origin of time,

ds? = —B(r)dt? + A(r)dr? 4+ r?(d6? + sir? 6d¢?) . (2.1)
where hereafteB(r) = B; A(r) = A. General relativity is based on Einstein’s equations

1

whereRy, is the Ricci tensor anRis the curvature scalar (trace of ten&y,). The matter content,
in this case, the internal description of the star, is encapsulated in thezenergentum tensor

T = (P+P)Ugly +pouy (2.3)

where respectively and p are the density and pressure of the fluid which depend on the radial
coordinate only. Alsoy,, is the 4-velocity (withu,u* = —1). Noticed that the fluid is at rest, then
Ur = Ug = Up = 0 andy; = —(—g") Y2 = —/B.

In order to derive the TOV equation we need to consider the conservettign= 0, which is
concomitant with Bianchi’s identities. This reads

1dB 2 dp

Bdr~ pipdr (2.4)
The information from the componen®;, G, andGgg provides the equation
d/r 5
& (K) —1-8nGpr? . (2.5)
Its solution, demanding th&(0) is finite, is
M(r) = /Or arv?p(r)dr (2.6)

This solution is similar to the Newtonian equation and therefore one ldli$ the mass function
for a given radiug. Adopting this association with the classical framework, the gravitational mass
inside the star will be calculated usidyj= M(R) whereRis the finite stellar radius.

It is also possible to combine all these equations to write down the TOV equétiéh [

oo e (5 (7)

dr r? 1_%

2.7)
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3. Parametrized TOV

The TOV equation (2.7) represents the full general relativistic equilibgonfiguration for
stars. The compactnegs= 2GM/R of a star measures the relevance of GR effects. The Newtonian
description is reasonable for low compactngss 1 stars. For instance, in white dwarfg/p ~
10 whereas in main sequence staigs ~ 104, Typical NS compactness values are in the
range 02 < nns < 0.4. In general, relativistic effects can be captured by pressure gatcue
contributions. Having in mind that typical predictions of ETG replace theiggonal coupling
by an effective quantity we then propose for the equilibrium equation tlewimg parametrization

Bp X4rr3p
dp _ G(l+a)Z(r)p (“?) <1+ A1) ) (3.1)
dr r2 1 _ Y2Ga(r) '
r
We also generalize the mass functiafi(r) in (3.1) by writing
d#
dr(r) =4m?(p+ap) . (3.2)

Note that this is an effective mass which is used in the integration of (3.1 Fao this definition

is different from the conventional mass as calculated in (2.6). Howéwveractual gravitational
mass remains beinl = M(R). Since this definition can also be written in terms of the metric
components (as usually defined ¥i&r) = €') there exists an alternative visualization for that

M) =r(1—e )y | (3.3)
Now, there are 5 new parameters, nane)\B, y, x ando.

e a parametrizes the effective gravitational coupling, i@& s = G(1+ o). In particular, in
f(R) theories one hags =1/3[8]. In GRa = 0.

B couples to the inertial pressure. The teint p) appears from the hydrostatic equilibrium
THY_r = 0, wherer is the radial coordinate. In GR = 1.

y is an intrinsic curvature contribution which is absent in the Newtonian phyiscsin the
classical casg =0. In GRy = 1.

X measures the active gravitational effects of pressure which is a relntafkature of GR.
Its effect has already investigated in Ref. [7]. In GR=1.

o changes the way the mass function is computed taking into account possiatatipnal
effects of pressure. In GR = 0.

The strategy which will be adopted hereatfter is to assume one realistic BdBeamvary such
parameters. This somehow follows the reasoning discussed in Ref. r{3hisl reference, it is
argued that theoretical EoS used for NSs are only an order of magtatigee than typical values
in nucleon scattering experiments. On the other hand, curvature effitltits WSs are many orders
of magnitude above the domain where GR is confined. Therefore, it isteatéaim we have a
better knowledgment about the NS EoS than the gravitational theory insskedbgects.

Some particular configurations of these parameters have the followingrigtitipn:
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o =L =y= x =0 =0: This corresponds to the Newtonian hydrostatic equilibrium which
gives rise to the Lane-Endem equation.

e a=0;B8=1;y=x =0;0=3: The neo-Newtonian hydrodynamic—a proposal which tries
to include relativistic inspired pressure effects at Newtonian level—has dpplied to the
stellar equilibrium problem in Ref. [10]. Contrary to the Newtonian casenémeNewtonian
case leads to the existence of maximum masses for NS as well as the GR predtictio-
ever, the maximum masses found in the neo-Newtonian formalism are slightkgrhftdn
the GR ones.

e a#£0;B=0;y=x =0 =0: This would consist in the simplest manifestation of modified
gravity in Newtonian stars. In general, somgR) theories gives rise to the modification
a = 1/3 together witho # 0.

e 0 = =y=0;x #0;0=0: Configuration tested in [7]. The paramefewould be related
to the generation on gravitational field by pressure which is absent in thgicdhcontext.

In (3.2) we have assumed a quite simple modification of the standard GR masi®equhich
disappears whep = p(R) = 0, whereR is the star’s radius. In general, insteadagh one deals
with a much complicated function that may depend even on higher derivativegssure. That
dependence is visible if one considers the modified Einstein’s equations as

Gu =T | T =0T+ W, |, (3.4)

whereTJ\‘,at is the standard perfect fluid energy-momentum terss,a coupling indicating one of
the ETG’s and\,, originates from geometric corrections. Following that approach one gats th
the hydrostatic equilibrium equations differs from (2.4) (see for exanidlp.[ The TOV equations
arising from such equations have much more complicated forms. Some of@¥klike equations
can be written as a parametrized TOV equations considered in that wattkdpatis still room for

a more detailed discussion in this direction (in progress). Here, we woultblikeess how small
modifications of GR stellar equations affect tfle- Rdiagram. Itis important to point out difficul-
ties appearing in integrating the mass function coming from the new possible catidifis. The
mass of the NS is calculated &s= fOR4rrr2p(r)dr independent of the functional form involved
for the effective mass# in these equations. In GR we have always- 0 and therefore there is
no difference between the effective mass and the physical meanimgfitajional mas$1. More-
over, there immediately gives rise a question on the stability of the considestets(sed heorem

2 in page 306 of Ref. [12]) which should be also investigated in the terms &€ THere, as in
GR, we have adopted the conditidiM/dp. > O for determining the maximum mass. However,
the stability problem for static equilibrium configurations—stars—in ETG is stihgen problem

in the field. To close the system of equations an EoS of the type

p=pp) , (3.5)

should be specified. Equilibirum configurations are found by numericallyirgy the coupled
system (3.1), (3.2) and (3.5) with the condition on the central pregge= po (corresponding
to a central densitpy) and demanding thp(R) = p(R) = 0.
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4. Numerical results on the Mass-Radius diagram

In order to numerically solve the set of equations (3.1), (3.2) and (3.5etermine the EoS
of the stellar interior. The usual technique convelpgdr into dp/dpdp/dr in (3.5) in such way
that the central densityo(r = 0) = po) becomes a free parameter. A givefvalue determines
one single point in th1 — Rdiagram. By varyingyo some orders of magnitude around the nuclear
saturation density one obtains a curve in this plshe R.

Among a vast number of possible EoS found in the literature the BSk familygeew unified
description of the stellar interior treating in a consistent way transitions betager and inner
crust (and core). The BSk structure has 23 free coefficients wtsdeh to be fitted numerically.
Each BSk equation of state correspond to one specific numerical fit. Xaonpde, the unified
BSk19, BSk20, and BSk21 EoSs approximate, respectively, the BBSY 13, 14] (soft), APR
[15] (moderate), and V18 [16] (stiff)—see also [17] for discussind eeferences.

Predictions for the maximum masses in BSk models slightly differ. BSk19 EoSridellow
masses larger tharV2,. Then, observations of very massive neutron stars with radiit8 Km
would favor the BSk20 and BSk21 fits. An up to date compilation of obsameetron stars can be
found in [2]. We use in this contribution the BSk20 only. Our strategy is to 8GR configuration
and let one or two parameters change simultaneously. This will be shown.if.Hig each panel
of this figure the solid black line represents the GR configuration.

5. Discussion

In this contribution we have proposed a freed-ho¢ parametrization of the relativistic equa-
tion for equilibrium. Our aim is fully pedagogical rather than a proposahfoew extended theory
for gravity. By keeping the BSk20 EoS for the neutron star interior— wisckalistic in the sense
that equilibrium configurations achievé2 using GR—we seek the impact of the new parameters
a,B,y,x ando. They can be visualized in Eq. (3.1).

It is worth noting that our approach does not cover all possible alteenttieories to GR.
For exampleF (R) and scalar-tensor theories are potential cases in which our apprppliésa
In fact, only modifications which give rise to TOV-like equations are pardmesgtrhere. A simi-
lar structure to the original TOV equation should be preserved. Altesigtiour approach could
be interpreted as the case of a pure GR (Einstein-Hilbert) gravitationahgatis some effective
energy-momentum tensor. However, we remark that as argued in P]sanuch closer to under-
stand the actual nuclear equation of state properties rather than thegmatttional field at very
high curvature environments.

The simplest expected manifestation of modified gravity theories occurs eideéinition of
the effective gravitational couplin@est — G(1+ a). The effects ofx on theM — Rplane are seen
in the panels belonging to rov(see the caption of Fig. 1). The larger thevalue, the smaller the
typical radius of the equilibrium configurations. The maximum mass is als@eedu

The parametef is clearly related to the maximum mass. The larger the inertial effects of
pressuref), the smaller the maximum mass.

Concerning the parametgrwe confirmed the findings of [7], i.e., the pressure self-gravity
contributes to reducing the maximum allowed NS with almost no impact on the raddhues star.
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Figure 1: Mass-radius diagram for various choices of the parametef} y; x; 0. In order to mention

a specific panel in the text we will introduce the followingtaion: The panel in the first row (A) and in
the first column (1), top-left, is called Al. It this panel tleéfects of varyinga and3 can be seen while the
other parameters are fixed to the GR configuratips: (L; x = 1; 0 = 0). The same strategy is adopted in
the remaining panels. In each panel the standard GR cortiiguia denoted by the solid-black line. The
mass is calculated via M jbR4nr2pdr even ifo # 0 was adopted when numerically solving the system of

equations i.e., we always plot the gravitational mdssather than the effective masg’. Effects of varying
o can be seen in panefdV,BIII ,Cll andDl.
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The impact of parametaris relevant to panelalll, Bl andCl. In the Newtonian hydrostatic
equilibriumy = 0. However, by re-performing the Newtonian classical case with a modiigsd
tonian potential of the typ¥(r) = —%'\, whereA is a constant, it is possible to obtain a similar
contribution with a singularity in the denominator of the TOV equation likeytkel case. The
existence of a maximum mass (absent in the Newtonian case) is a pure Itidgti@diction. But
it is worth noting that the curves with= 0 produce indeed a maximum mass, but with a very large

value which can not be seen in these plots.
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