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We test a freead hocparametrization of the Tolman-Oppenheimer-Volkoff (TOV)equation. We

do not have in mind any specific extended theory of gravity (ETG) but each new parameter in-

troduced has a physical interpretation. Our aim is fully pedagogical rather than a proposal for a

new ETG. Given a realistic neutron star equation of state we map the contributions of each new

parameter into a shift in trajectories of the mass-radius diagram. This exercise allows us to make

the correspondence between each TOV sector with some possible modifications of gravity and

clarifies how neutron star observations are helpful for distinguishing theories.
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1. Introduction

One of the main challenges in modern astrophysics concerns the equation ofstate (EoS) of
neutron stars (NSs). Recent observations point out toM ∼ 2M⊙ [1, 2] objects preferring therefore
stiff nuclear EoS. However, it is worth noting that this latter conclusion is valid onlyin the general
relativity (GR) domain.

Another important property of NSs is the stellar radiusR. The mass-radius(M−R) diagram
has become a comprehensive tool for matching theoretical predictions to observations. Modifica-
tions of GR can produce shifts in the trajectories along theM −R diagram but sometimes higher
masses are achieved at the price of having undesirable larger radii configurations. The current ra-
dius determination is not so precise as in the mass case but future satellites will place very precise
constraints on bothM andR for the same object. As specific examples one can cite The Neutron
star Interior Composition Explorer (NICER) mission and the SKA radio project.

Although GR is a very well tested theory and its predictions have been confirmed with solar
system and binary pulsars observations the cosmological arena still challenges it. Actually, by
adopting GR we are left with the strong indication that∼ 95% of the energy budget of the universe
is unknown. According to the most recent observations, this fraction is divided into the probably
fraction of∼ 25% for dark matter and∼ 70% for dark energy.

One possible solution relies in modifying GR on large (cosmological) scales. Byreplacing
either dark matter or the dark energy component by some extended theory of gravity (ETG) the
already confirmed predictions of GR should be reconquered. This happens usually via the inclusion
of screening mechanisms around an astrophysical environment where the ETG predictions suffer
a metamorphopsia back to the GR ones. If this is actually the case, it is therefore expected that
the NS interior and its habitat remains described by GR. However, the use ofNSs for constraining
ETGs has become a fruitful route of investigation. See [3] for a few recent works on this topic.

The first usual procedure is to compute the analogue of the Tolman-Oppenheimer-Volkoff
(TOV) equation [4, 5]—the GR structure for static and spherical objects—for your favorite ETG.
In general, departures from the standard TOV equation are non-trivial. However, it can be useful
to understand how masses and radii of NSs are shifted in theM −R plane according to specific
changes in the TOV structure. In this sense, a recent and interesting work [6] proposed a “Post-
TOV” formalism based on the parametrized post-Newtonian theory in which non-GR effects can
be separately studied in relativistic stars. We also point out the analysis done in Ref. [7] in which
the specific pressure contribution to the active gravitational mass in NSs is studied in detail.

Our aim in this contribution is to propose a free parametrization for the TOV equation. The
curious reader can go directly to Eqs. (3.1) and (3.2). In some sense, this is an extension of [7]. Our
approach should be seen as a pedagogical guide to understand the roleplayed by different physical
contributions to the TOV equation rather than new a ETG.

In the next section we review a quick derivation of the TOV equation. Section 3 presents our
free parametrization for stellar equilibrium equations. We will adopt one realistic EoS for the NS
interior and show in section 4 results on theM−Rplane when varying such new parameters. In the
final section we discuss in more detail the role played by each parameter. Weusec= ℏ= 1 units.
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2. The Tolman-Oppenheimer-Volkoff equation

In this section we review the derivation of the TOV equation which can be found in most
textbooks about GR or relativistic astrophysics.

The first and simplest step in studying stellar objects is to consider that matter is spherically
symmetric distributed in a static geometry i.e., time reversal about any origin of time,

ds2 =−B(r)dt2+A(r)dr2+ r2(dθ 2+sin2 θdφ2) . (2.1)

where hereafterB(r)≡ B;A(r)≡ A. General relativity is based on Einstein’s equations

Rµν −
1
2

gµνR= 8πGTµν , (2.2)

whereRµν is the Ricci tensor andR is the curvature scalar (trace of tensorRµν ). The matter content,
in this case, the internal description of the star, is encapsulated in the energy-momentum tensor

Tµν = (ρ + p)uµuν + pgµν , (2.3)

where respectivelyρ and p are the density and pressure of the fluid which depend on the radial
coordinate only. Also,uµ is the 4-velocity (withuµuµ =−1). Noticed that the fluid is at rest, then
ur = uθ = uφ = 0 andut =−(−gtt)−1/2 =−

√
B.

In order to derive the TOV equation we need to consider the conservationTµν
;ν = 0, which is

concomitant with Bianchi’s identities. This reads

1
B

dB
dr

=− 2
ρ + p

dp
dr

. (2.4)

The information from the componentsGtt , Grr andGθθ provides the equation

d
dr

( r
A

)

= 1−8πGρr2 . (2.5)

Its solution, demanding thatA(0) is finite, is

M(r)≡
∫ r

0
4πr ′2ρ(r ′)dr′ . (2.6)

This solution is similar to the Newtonian equation and therefore one callsM(r) the mass function
for a given radiusr. Adopting this association with the classical framework, the gravitational mass
inside the star will be calculated usingM = M(R) whereR is the finite stellar radius.

It is also possible to combine all these equations to write down the TOV equation [4, 5].

dp
dr

= −GM(r)ρ
r2

(

1+ p
ρ

)(

1+ 4πr3p
M(r)

)

1− 2GM(r)
r

. (2.7)
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3. Parametrized TOV

The TOV equation (2.7) represents the full general relativistic equilibriumconfiguration for
stars. The compactnessη = 2GM/Rof a star measures the relevance of GR effects. The Newtonian
description is reasonable for low compactnessη ≪ 1 stars. For instance, in white dwarfsηWD ∼
10−6 whereas in main sequence starsηMS ∼ 10−4. Typical NS compactness values are in the
range 0.2 . ηNS. 0.4. In general, relativistic effects can be captured by pressure or curvature
contributions. Having in mind that typical predictions of ETG replace the gravitational coupling
by an effective quantity we then propose for the equilibrium equation the following parametrization

dp
dr

= −G(1+α)M (r)ρ
r2

(

1+ β p
ρ

)(

1+ χ4πr3p
M (r)

)

1− γ2GM (r)
r

. (3.1)

We also generalize the mass functionM (r) in (3.1) by writing

dM (r)
dr

= 4πr2(ρ +σ p) . (3.2)

Note that this is an effective mass which is used in the integration of (3.1). Forσ 6= 0 this definition
is different from the conventional mass as calculated in (2.6). However,the actual gravitational
mass remains beingM ≡ M(R). Since this definition can also be written in terms of the metric
components (as usually defined viaA(r) = eλ ) there exists an alternative visualization for that

M (r) = r(1−e−λ (r)) . (3.3)

Now, there are 5 new parameters, namelyα , β , γ, χ andσ .

• α parametrizes the effective gravitational coupling, i.e.,Ge f f = G(1+α). In particular, in
f (R) theories one hasα = 1/3 [8]. In GRα = 0.

• β couples to the inertial pressure. The term(ρ + p) appears from the hydrostatic equilibrium
Tµν

;ν=r = 0, wherer is the radial coordinate. In GRβ = 1.

• γ is an intrinsic curvature contribution which is absent in the Newtonian physics,i.e., in the
classical caseγ = 0. In GRγ = 1.

• χ measures the active gravitational effects of pressure which is a remarkable feature of GR.
Its effect has already investigated in Ref. [7]. In GRχ = 1.

• σ changes the way the mass function is computed taking into account possible gravitational
effects of pressure. In GRσ = 0.

The strategy which will be adopted hereafter is to assume one realistic EoS and then vary such
parameters. This somehow follows the reasoning discussed in Ref. [9]. In this reference, it is
argued that theoretical EoS used for NSs are only an order of magnitudelarger than typical values
in nucleon scattering experiments. On the other hand, curvature effects within NSs are many orders
of magnitude above the domain where GR is confined. Therefore, it is safer to claim we have a
better knowledgment about the NS EoS than the gravitational theory inside these objects.

Some particular configurations of these parameters have the following interpretation:
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• α = β = γ = χ = σ = 0: This corresponds to the Newtonian hydrostatic equilibrium which
gives rise to the Lane-Endem equation.

• α = 0; β = 1; γ = χ = 0; σ = 3: The neo-Newtonian hydrodynamic—a proposal which tries
to include relativistic inspired pressure effects at Newtonian level—has been applied to the
stellar equilibrium problem in Ref. [10]. Contrary to the Newtonian case, theneo-Newtonian
case leads to the existence of maximum masses for NS as well as the GR prediction. How-
ever, the maximum masses found in the neo-Newtonian formalism are slightly higher than
the GR ones.

• α 6= 0; β = 0;γ = χ = σ = 0: This would consist in the simplest manifestation of modified
gravity in Newtonian stars. In general, somef (R) theories gives rise to the modification
α = 1/3 together withσ 6= 0.

• α = β = γ = 0;χ 6= 0; σ = 0: Configuration tested in [7]. The parameterχ would be related
to the generation on gravitational field by pressure which is absent in the classical context.

In (3.2) we have assumed a quite simple modification of the standard GR mass equation which
disappears whenp = p(R) = 0, whereR is the star’s radius. In general, instead ofσ p one deals
with a much complicated function that may depend even on higher derivativesof pressure. That
dependence is visible if one considers the modified Einstein’s equations as

Gµν = Teff
µν , Teff

µν = σ̄Tmat
µν +Wµν , (3.4)

whereTmat
µν is the standard perfect fluid energy-momentum tensor,σ̄ is a coupling indicating one of

the ETG’s andWµν originates from geometric corrections. Following that approach one gets that
the hydrostatic equilibrium equations differs from (2.4) (see for example [11]). The TOV equations
arising from such equations have much more complicated forms. Some of suchTOV-like equations
can be written as a parametrized TOV equations considered in that work butthere is still room for
a more detailed discussion in this direction (in progress). Here, we would liketo stress how small
modifications of GR stellar equations affect theM−Rdiagram. It is important to point out difficul-
ties appearing in integrating the mass function coming from the new possible modifications. The
mass of the NS is calculated asM =

∫ R
0 4πr2ρ(r)dr independent of the functional form involved

for the effective massM in these equations. In GR we have alwaysσ = 0 and therefore there is
no difference between the effective mass and the physical meaningful gravitational massM. More-
over, there immediately gives rise a question on the stability of the considered system (seeTheorem
2 in page 306 of Ref. [12]) which should be also investigated in the terms of ETG’s. Here, as in
GR, we have adopted the conditiondM/dρc > 0 for determining the maximum mass. However,
the stability problem for static equilibrium configurations—stars—in ETG is still anopen problem
in the field. To close the system of equations an EoS of the type

p≡ p(ρ) , (3.5)

should be specified. Equilibirum configurations are found by numerically solving the coupled
system (3.1), (3.2) and (3.5) with the condition on the central pressurep(0) = p0 (corresponding
to a central densityρ0) and demanding thap(R) = ρ(R) = 0.
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4. Numerical results on the Mass-Radius diagram

In order to numerically solve the set of equations (3.1), (3.2) and (3.5) wedetermine the EoS
of the stellar interior. The usual technique convertsdp/dr into dp/dρ dρ/dr in (3.5) in such way
that the central density (ρ(r = 0) = ρ0) becomes a free parameter. A givenρ0 value determines
one single point in theM−Rdiagram. By varyingρ0 some orders of magnitude around the nuclear
saturation density one obtains a curve in this planeM−R.

Among a vast number of possible EoS found in the literature the BSk family provide an unified
description of the stellar interior treating in a consistent way transitions between outer and inner
crust (and core). The BSk structure has 23 free coefficients which have to be fitted numerically.
Each BSk equation of state correspond to one specific numerical fit. For example, the unified
BSk19, BSk20, and BSk21 EoSs approximate, respectively, the EoSs FPS [13, 14] (soft), APR
[15] (moderate), and V18 [16] (stiff)—see also [17] for discussion and references.

Predictions for the maximum masses in BSk models slightly differ. BSk19 EoS does not allow
masses larger than 2M⊙. Then, observations of very massive neutron stars with radius∼ 13 Km
would favor the BSk20 and BSk21 fits. An up to date compilation of observedneutron stars can be
found in [2]. We use in this contribution the BSk20 only. Our strategy is to fix the GR configuration
and let one or two parameters change simultaneously. This will be shown in Fig. 1. In each panel
of this figure the solid black line represents the GR configuration.

5. Discussion

In this contribution we have proposed a free “ad-hoc” parametrization of the relativistic equa-
tion for equilibrium. Our aim is fully pedagogical rather than a proposal fora new extended theory
for gravity. By keeping the BSk20 EoS for the neutron star interior— whichis realistic in the sense
that equilibrium configurations achieve 2M⊙ using GR—we seek the impact of the new parameters
α ,β ,γ ,χ andσ . They can be visualized in Eq. (3.1).

It is worth noting that our approach does not cover all possible alternative theories to GR.
For example,F(R) and scalar-tensor theories are potential cases in which our approach applies.
In fact, only modifications which give rise to TOV-like equations are parametrized here. A simi-
lar structure to the original TOV equation should be preserved. Alternatively, our approach could
be interpreted as the case of a pure GR (Einstein-Hilbert) gravitational action plus some effective
energy-momentum tensor. However, we remark that as argued in [9], one is much closer to under-
stand the actual nuclear equation of state properties rather than the actualgravitational field at very
high curvature environments.

The simplest expected manifestation of modified gravity theories occurs via a redefinition of
the effective gravitational couplingGe f f → G(1+α). The effects ofα on theM−Rplane are seen
in the panels belonging to rowA (see the caption of Fig. 1). The larger theα value, the smaller the
typical radius of the equilibrium configurations. The maximum mass is also reduced.

The parameterβ is clearly related to the maximum mass. The larger the inertial effects of
pressure (β ), the smaller the maximum mass.

Concerning the parameterχ we confirmed the findings of [7], i.e., the pressure self-gravity
contributes to reducing the maximum allowed NS with almost no impact on the radius of the star.
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Figure 1: Mass-radius diagram for various choices of the parametersα; β ; γ; χ ; σ . In order to mention
a specific panel in the text we will introduce the following notation: The panel in the first row (A) and in
the first column (I), top-left, is called AI. It this panel theeffects of varyingα andβ can be seen while the
other parameters are fixed to the GR configuration (γ = 1; χ = 1; σ = 0). The same strategy is adopted in
the remaining panels. In each panel the standard GR configuration is denoted by the solid-black line. The
mass is calculated via M=

∫ R
0 4πr2ρdr even ifσ 6= 0 was adopted when numerically solving the system of

equations i.e., we always plot the gravitational massM rather than the effective massM . Effects of varying
σ can be seen in panelsAIV,BIII ,CII andDI .
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The impact of parameterγ is relevant to panelsAIII ,BI andCI. In the Newtonian hydrostatic
equilibriumγ = 0. However, by re-performing the Newtonian classical case with a modifiedNew-
tonian potential of the typeV(r) = − GM

r−A, whereA is a constant, it is possible to obtain a similar
contribution with a singularity in the denominator of the TOV equation like theγ = 1 case. The
existence of a maximum mass (absent in the Newtonian case) is a pure relativistic prediction. But
it is worth noting that the curves withγ = 0 produce indeed a maximum mass, but with a very large
value which can not be seen in these plots.
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