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Both the symmetry energy part and excluded volume corrections to the equation of state play an
important role for the neutron star interior structure and composition, namely for the profile of
the baryon density and the proton fraction. While the symmetry energy uniquely determines the
proton fraction, excluded volume effects control the maximum density values inside neutron stars.
Observations of cooling neutron stars indicate that the fast direct Urca cooling is not operative for
the typical, low mass stars, pointing at proton fractions that lie below the threshold for the onset
of direct Urca cooling process. This in turn, restricts the density range admissible in neutron
star interiors and may require an excluded volume correction. In this contribution we discuss the
interplay between fast cooling, symmetry energy and excluded volume corrections to the equation
of state that would be required to fulfill the direct Urca cooling constraint.
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1. Introduction

Astronomical observations of neutron stars (NS) provide a way to test our knowledge of nu-
clear matter properties at high densities such as the equation of state (EoS). They allow to derive
constraints on their theoretical description by microscopic approaches. Basic quantities like mass,
radius, moment of inertia, cooling rates are of special interest for this purpose. Of great impor-
tance is the density dependent nuclear symmetry energy Es(n), a quantitiy that determines the
properties of isospin asymmetric atomic nuclei and, of course, the composition of neutron star in-
teriors. It is best determined from isobaric analog states (IAS) of nuclei [1] at the reference density
n = n∗ ∼ 2/3 n0 where the saturation density n0 = 0.15 fm−3 is the value one would extrapolate
for atomic nuclei of infinite size. Other laboratory experiments for determining the nuclear sym-
metry energy include measurements of the nuclear polarizability [2], parity violation in electron
scattering on nuclei [3], but also measurements of nuclear masses [4], giant dipole resonances [5]
and others (for an exhaustive review, see [6, 7]).

For pure hadronic neutron stars (composed of neutrons, protons, electrons and muons only), it
is the symmetry energy functional that determines the proton content in their interiors. Moreover,
the proton fraction x can trigger a rapid cooling by the direct Urca (DU) process n→ p + e−+ ν̄e

if it overcomes the threshold xDU for the onset of this process [8]. Observational evidence [9]
shows that typical NS (with masses in the range of 1.4 . . .1.6 M�) do not cool by this extremely
fast process, since otherwise one could not explain the observation of a broad spectrum of surface
temperatures for neutron stars with an age exceeding ∼ 103 years. This demonstrates the impor-
tance of the DU cooling process as a constraint to the EoS of NS. For a detailed discussion of the
DU constraint, see [10, 11, 12]. In this contribution, we consider a one-parameter set of symmetry
energy functionals and explore how the restrictions on the variation of that parameter stemming
from the DU constraint could be relaxed when allowing for excluded volume corrections to the
nuclear EoS at supersaturation densities.

2. Es(n) functional models

In order to describe infinite nuclear matter in neutron star interiors we consider the energy
per particle as a functional of the baryon number density n = np +nn and isospin asymmetry α =
(nn−np)/n

Enuc(n,α) = E0(n)+Es(n)α
2 +O(α4) , (2.1)

which in an isospin symmetric system reduces to E0(n) = E(n,α = 0). Introducing the proton
fraction x = np/n the asymmetry can be written as α = (1− 2x). In the following we consider
stellar matter that consists of nucleons and leptons and we shall keep in (2.1) only the quadratic
asymmetry dependence defined by Es(n) while neglecting higher order corrections, which usually
is an excellent approximation.

2.1 Energy of symmetric matter

The model we choose in this work for the description of the energy E0(n) of uniform, infinite,
symmetric nuclear matter is based on a generalized relativistic density functional approach using
the "DD2" parametrization given in Ref. [13]. It fulfills all basic constraints from nuclear structure.

2



P
o
S
(
M
P
C
S
2
0
1
5
)
0
2
6

Excluded volume, Es(n) and DU cooling in NS David E. Alvarez-Castillo

It is also in accordance with the rather stringent constraint that the predicted maximum NS mass
should be not less than that of the most massive pulsars for which masses M ∼ 2 M� have been
observed [14, 15].

2.2 Symmetry energy

In this study we discuss two classes of symmetry energy functionals that both are in agree-
ment with constraints from nuclear structure and that have already been successfully applied to the
description of neutron stars, see also Ref. [16].

The first one is obtained from extending the DD2 model by varying the density dependence
of the ρ-meson coupling to nucleons and then extracting the resulting symmetry energy functional
Es(n). The variations defined in [17] were applied there for studies of the neutron skin thickness of
heavy nuclei and of core-collapse supernova evolution [18]. They predict a sufficiently gentle rise
of Es(n) at supersaturation densities which is not in conflict with the DU constraint [16]. Therefore
we do not consider the DD2 based class of symmetry energies further in this contribution.
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Figure 1: Left panel: Symmetry energy as a function of baryon density for the MDI-type ansatz (2.2) com-
pared to the IAS constraint [1]. Red circles located in the low density region correspond to an experimental
determination of the symmetry energy in collisions of asymmetric nuclei [21, 22]. Right panel: Proton frac-
tion as a function of baryon density for the MDI-type ansatz (2.2) compared to the proton fraction threshold
of the direct Urca process.

To study the effects of the symmetry energy at high densities we base our description on the
behaviour following from the MDI-type [19, 20] power-law ansatz

Es(n) = E∗s (n/n∗)γ . (2.2)

The three parameters are fixed from constraints obtained recently by Danielewicz and Lee [1] by
analysing IAS of nuclei. The reference density is found to be n∗ = 0.105 fm−3 where the symmetry
energy is E∗s = Es(n∗) = 25.7 MeV. According to the IAS constraint [1] there is a rather narrow
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error band in the density range 0.04 < n/fm−3 < 0.16 shown by the red, shaded area in the left
panel of Fig. 1. In the same panel we show the symmetry energy (2.2) where the exponent γ is
chosen in the range 1/6 < γ < 1 . We would like to note that recently the fusion probabilties
measured in experiments for the synthesis of superheavy elements were used for the first time to
constrain the density dependence of the MDI-type symmetry energy employed in their theoretical
description to the narrower region 1/2 < γ < 1 [23].

The symmetry energy parameter is defined as S = Es(n)|n=n0 , and due to the proximity of the
saturation density n0 and the reference density n∗ an approximately linear dependence for S(γ) is
obtained, see the left panel of Fig. 2.
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Figure 2: MDI-type symmetry energy properties. Left panel: Dependence of the symmetry energy S =
Es(n0) on the parameter γ . Right panel: Threshold density nDU for the onset of the DU cooling process as a
function of the parameter γ . The nDU value is solely determined by Es(n) in NS matter.

2.3 Direct Urca process constraint

The MDI-type symmetry energy functional introduced in the previous section serves to solve
for the proton and muon fractions under neutron star constraints (for details see, e.g., [16] or the
textbook [24]). As it has been already mentioned, the proton fraction plays an important role in the
neutron star phenomenology, in particular since it dictates whether the DU process n→ p+ e+ ν̄e

can occur or not [8]. Once the NS central density nc exceeds the critical value nDU for which
holds that x(nDU) = xDU(nDU), this fastest neutrino cooling process starts operating and causes a
dramatic drop of the NS core temperature. Typical timescales for the cooling wave from the core
to reach the surface are about 100 years. Then, for the case of DU cooling, the photon luminosity
of the star drops down rapidly, turning the star practically invisible. We do not expect this process
to be operative in typical, not too massive neutron stars since we observe cooling neutron stars
much older than 1000 years with surface temperatures that are not compatible with this fast DU
cooling (see [10, 12] for a detailed discussion on the DU process constraint). To understand the DU
threshold condition we look at the triangle inequality for the Fermi momenta of neutron, proton and
electron involved in the process (neutrino momenta can be safely neglected since they are orders
of magnitude smaller) leading to the condition

n1/3
n < n1/3

p +n1/3
e , (2.3)
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which (using charge neutrality: x = xp = xe + xµ , xi = ni/n) is formulated in terms of proton and
muon fractions as (1− x)1/3 < x1/3 +(x− xµ)1/3 which is equivalent to

x > 1/{1+(1+(ne/(ne +nµ))1/3]3} . (2.4)

For low densities where electrons are the only lepton species one easily recovers the classical result
for the DU threshold without muons xDU = 1/9 = 11.1% [8]. The density dependence of the DU
threshold is obtained by inserting the density dependent muon fraction xµ(n) into Eq. (2.4); the
result is shown in Fig. 1 (right panel). The stiffness of the symmetry energy for the MDI-type
models is strongly dependent on the γ parameter. We can see from the right panel of Fig. 2 that
for all γ ≥ 3/4 the DU constraint is violated already for densities below ∼ 2.4 n0 = 0.36 fm−3.
The question arises: What values of nc can one meet in NS of a certain mass not exceeding a
typical value? The answer to this question shall depend on the neutron star EoS, in particular on
its stiffness. In order to systematically study this dependence, we will consider a stiffening of the
high-density EoS by an excluded volume for baryons.

2.4 Excluded volume correction to the EoS

Our choice of EoS for the neutron star description is the density dependent relativistic mean-
field EoS "DD2" [13, 25]. We implement the excluded volume correction as it is a means to account
for an effect of the quark substructure of nucleons which leads to the repulsive quark Pauli block-
ing interaction in hadronic matter [26, 27]. This correction as described in Ref. [28] results in a
stiffening the EoS at supersaturation densities while remaining in accordance with experimental
constraints below and around saturation. The details of the formulation of the excluded volume
modification of this class of EoS models can be found in Ref. [28]. Here we use the available
volume fraction Φ(n) = 1−vexn with the excluded volume parameter vex = 1/nx, where nx is the
closest packing density. This approach has already been implemented in the description of the
hadronic part of hybrid star EoS, as presented in [29, 30, 31]. The possible consequences of imple-
menting a stiffening of the EoS at supersaturation densities in core-collapse supernova simulations
has recently been studied in Ref. [32].

It is important to mention that for finite nx the hadronic EoS becomes acausal at densities
n ∼ nx. This problem, however, is cured in a physical way by allowing for a phase transition to
quark matter in the NS interior which is another inevitable consequence of the quark substructure
of baryons. Furthermore, when the excluded volume correction is introduced in the description
of hybrid star configurations, this approach serves to solve several problems like masquerades,
reconfinement of quark matter at high densities and, the hyperon puzzle, as described in [33].

2.5 The neutron star mass-radius and mass-central density relations

Above we have defined a family of EoS (2.1) for asymmetric nuclear matter with two free
parameters: γ for the stiffness of the symmetry energy Es(n) and vex for the stiffness of the EoS of
symmetric matter E0(n)1. When augmented with the EoS for leptons Elep(n) and under fulfillment

1Our assumption that the excluded volume is isospin independent could be relaxed in a refined calculation which
would the modify the results in Figs. 3-5 quantitatively.
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of the NS constraints (for which electric charge neutrality and β -equilibrium conditions determine
the density dependent particle fractions x(n), xe(n) and xµ(n))

E(n) = ε(n)/n = Enuc(n)+Elep(n) , P(n) = n2(dE(n)/dn) . (2.5)

With these inputs the NS structure can be obtained by solving the Tolman-Oppenheimer-Volkoff
(TOV) equations [34, 35] for the hydrodynamic stability of static, spherically symmetric bodies in
the framework of general realitivity

dP(r)
dr

= −GM(r)ε(r)
r2

[1+P(r)/ε(r)]
[
1+4πr3P(r)/M(r)

]
[1−2GM(r)/r]

, (2.6)

dM(r)
dr

= 4πr2
ε(r). (2.7)

For each initial value of central (energy) density nc = n(r = 0) upon Runge-Kutta integration of
these differential equations one gets a pair of values for the mass M and the radius R of the corre-
sponding NS configuration. Varying nc in the appropriate range for a given parametrization of the
EoS one obtains a sequence of NS configurations defining uniquely a function M(R), or equiva-
lently M(nc). This equivalence of P(ε) and M(R) is the theoretical basis for determining the EoS
of NS from sufficiently accurate simultaneous measurements of their masses and radii. For a recent
discussion and present status of this issue, see [31] and references therein.
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Figure 3: Solutions of the TOV equations for a MDI-type Es(n) model with γ = 9/10 for different values
of the nucleon excluded volume vex. Left panel: NS mass as a function central density nc. The vertical line
marked as nDU corresponds to the threshold density for the onset of DU cooling, which is reached in the
center of a M = 1.6 M� star for all vex values but the highest. Right panel: NS mass-radius relation. The
dashed line joining all the diamond symbols for each mass-radius curve corresponds to nDU. Neutron stars
with M < 1.6 M� do not suffer from DU cooling only when vex > 2.4 fm3 .

In Fig. 3 we show the results of the TOV solution using the rather stiff high-density symmetry
energy parametrization with γ = 9/10 for different values of the nucleon excluded volume vex. On
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the left panel we demonstrate how stiffening the EoS by increasing vex lowers the central density
for a star of given mass and increases the minimal star mass for which the DU process will become
operative. These masses and corresponding radii are shown by the diamond symbols in the right
panel of that figure.

In the present work we are interested in the consequences that the additional DU constraint
could have on the stiffness of Es(n) and E0(n) in the EoS (2.1). In Fig. 4 we show how the central
densities of neutron stars depend on the stiffness of the symmetric part of the EoS for five neutron
star masses: 1.25, 1.40, 1.60, 1.8, and 2.0 M� as a function of the excluded volume parameter
vex which controls the high-density stiffening of the E0(n) part for the employed DD2 EoS. The
two panels of Fig. 4 differ by the MDI-type symmetry energy used: γ = 2/3 in the left panel
and γ = 9/10 in the right panel. It is clear that for low γ values like γ = 2/3 (which exhibit soft
Es(n) behavior), the DU threshold is never reached so that no additional constraint for vex arises.
This statement, however, has to be taken with the caveat that we have used a very stiff energy
of symmetric matter E0(n) here. For the γ = 9/10 model the opposite conclusion applies: the DU
constraint is violated in all cases except for the very lightest stars and very large excluded volumina.
In order to fulfill the DU constraint for stiff Es(n) models sufficiently large values of vex have to be
chosen to keep nc below nDU.
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Figure 4: Central density versus excluded volume for stars of different mass, compared to the threshold
density (red solid line) for the direct Urca process.

3. Results and Conclusions

We have demonstrated on the example of the DD2 EoS that stiffening E0(n) by increasing the
excluded volume correction lowers the central density nc of a NS with given mass. We have used
the class of MDI-type density dependence of the symmetry energy Es(n) to show how increasing
its stiffness lowers the threshold density nDU for the onset of the DU cooling process. On this
basis, requiring the DU constraint to be fulfilled, i.e. that for typical neutron stars (not exceeding
a certain mass between 1.4 and 1.6 M�) the DU cooling process will not be operative, a condition
for the minimal stiffness of the of the symmetric EoS for a given symmetry energy (above the mass
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dependent threshold value) has been obtained, shown in Fig. 4. For the example considered in this
contribution, there is an approximately linear dependence of the minimal NS radius R (or excluded
volume vex) and the symmetry energy S (or the γ parameter).

Below the NS mass dependent threshold value for the symmetry energy S the DU process will
not operate even for the softest EoS in the sample and consequently there is no constraint on the
excluded volume vex. It is important to note that for softer MDI-type Es(n) for which γ < 0.74, the
fast DU cooling is never activated in typical stars with masses not exceeding 1.6 M�. This is due
to the fact that the symmetric EoS E0(n) for DD2 is already sufficiently stiff in order to not allow
densities above nDU in the center of those stars.
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Figure 5: Effect of the direct Urca cooling constraint on neutron stars of different masses: 1.4 M� (filled
circles), 1.5 M� (filled squares), and 1.6 M� (filled diamonds) for the MDI-type parametrization of the
symmetry energy and the DD2 parametrization of the symmetric EoS. Below the values for the symmetry
energy S (or γ) indicated by vertical dotted lines and denoted as "DU thresholds for vex = 0" no constraints
for radii R (or vex) arise. The filled symbols connected with solid lines to guide the eye denote minimal radii
R to fulfill the DU cooling constraint; numbers at the symbols denote values of vex in fm3.

The analysis of excluded volume effects carried out in this contribution complements recent
studies where it was shown that:

• a stiffening of the EoS (which leads to a flattening of the density profile, as we show in Fig-
ure 3, left panel) would lead to a slowing down of the other (non-DU) cooling processes,
unless this effect is compensated by modifications of the density dependence of pairing
gaps [36].
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• a stiffening of the EoS (by excluded volume) allows an early onset of deconfinement, with
central densities as low as 2.4 n0. (albeit at Monset ∼ 2 M�) with a possibility for a discon-
nected stable hybrid star branch (third family, including high- mass twins) [29, 31].

• the quark matter phase transition may thus be another solution of the DU problem whenever
it occurs [37], similar to the analoguous solution of the hyperon puzzle by [38].

We would like to remark that the above conclusions are made for the MDI-type symmetry
energy functional and therefore model dependent. Regarding the Es(n) functionals, wew ould
like to refer to other previous works that derive predictions of NS radii once Es(n) is measured
accurately for a broader density range around saturation [39, 40].

There is the alternative possibility that the symmetry energy of nuclear matter has a high-
density behaviour that a priori does not allow the DU process to occur. This is the case, for in-
stance, for the class of DD2-type symmetry energies introduced in [17]. For such Es(n) it has been
demonstrated that the symmetry energy contribution to the NS EoS behaves universal [12]. For a
recent detailed discussion of this conjecture, see [16]. This would allow to extract the symmetric
EoS E0(n) from a sufficiently precise measurement of the neutron star EoS that could eventually
be provided by future satellite missions such as NICER.
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