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In this work I briefly review the role played by hyperons in determining the properties of neutron
and proto-neutron stars. In particular, I review the so-called “hyperon puzzle”, i.e., the problem
of strong softening of the equation of state (EoS) of dense matter due to the presence of hyper-
ons which leads to maximum masses of compact stars that are not compatible with the recent
observations of∼ 2M� millisecond pulsars. I discuss some of the solutions that were proposed to
tackle this problem. Finally, I re-examine the influence of hyperons on the cooling of newly born
neutron stars as well as on the development of the r-mode instability.
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Hyperons and Neutron Stars

1. Introduction

Neutron stars are born in the gravitational collapse of massive stars during a Type-II, Ib or Ic
supernova event. Their masses are typically of the order of 1− 2M�, where M� ' 2× 1033g is
the mass of the Sun, and their radii are within the range 10−12 km. With central densities in the
range of 4−8 times the normal nuclear matter saturation density, ε0 ∼ 2.7×1014 g/cm3 (ρ0 ∼ 0.16
fm−3), neutron stars are most likely among the densest objects in the Universe [1]. These objects
are excellent laboratories to test our present understanding of the theory of strongly interacting
matter under extreme conditions. They offer an interesting interplay between nuclear physics of
dense matter and astrophysical observations in a borad spectrum of electromagnetic waves.

The conditions under which matter exists inside neutron stars are very different from those
one can find in laboratories on Earth. Therefore, a good theoretical knowledge of the equation of
state (EoS) of dense matter is required to understand the properties of these objects. Up to date
one of the interesting open questions is the state of the matter in the interiors of neutron stars.
Traditionally the core of neutron stars has been modeled as a uniform fluid of neutron-rich nuclear
matter in equilibrium with respect to the weak interactions (β -stable matter). However, due to the
large value of the density, new hadronic degrees of freedom are expected to appear in addition to
nucleons. Hyperons, baryons with a strangeness content, are an example of these new degrees of
freedom. Contrary to terrestrial conditions, where hyperons are unstable and decay into nucleons
through weak interactions, matter in neutron stars maintains the weak equilibrium between the
decays and their inverse capture processes. Hyperons may appear in the inner cores of neutron stars
at densities around (2−3)×ρ0. Their onset leads to a softening of the high-density domain of the
EoS and consequently to a reduction of the maximum mass of the stellar sequences constructed
from such EoS.

Hyperons can strongly influence not only the masses and radii of neutron stars, but also their
thermal evolution and gravitational instabilities. These aspects of neutron star physics are very
sensitive to their composition, and therefore to the hyperonic content of neutron star interiors. The
cooling of neutron stars is affected by the presence of hyperons because they modify neutrino
emissivity of dense matter and allow for fast cooling mechanisms. Furthermore, the emission of
gravitational waves in hot and rapidly rotating neutron stars due to the so-called r-mode instability
is affected by hyperons, because hyperons dominate the bulk viscosity of matter as soon as they
appear in the neutron star interior.

The remainder of this review is organized as follows. In Sec. 2 I discuss in some detail the
hyperon puzzle and a variety of possible solutions proposed during the recent years. Section 3 is
devoted to the cooling of hyperonic stars, where I discuss the role played by hyperons in determin-
ing the emissivity of newly born neutron stars. In Sec. 4 I discuss the physics of damping of r-mode
instability and the contribution of hyperons to this damping. I close this review with a summary in
Sec. 5

2. The hyperon puzzle

The presence of hyperon in neutron stars was considered for the first time in the pioneering
work of Ambartsumyan and Saakyan in 1960 [2]. Since then, their effects on the properties of
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Figure 1: Illustration of the effect of the presence of hyperons on the EoS (panel (a)) and mass of a neutron
star (panel (b)). A generic model with (black solid line) and without (red dashed line) hyperons has been
considered. The horizontal line shows the observational mass of the Hulse–Taylor [14] pulsar.

these objects have been studied by many authors using either phenomenological [3, 4] or micro-
scopic [5, 6, 7, 8, 9] approaches to the EoS of neutron star matter. Phenomenological approaches,
either relativistic or non-relativistic, are based on effective density-dependent interactions which
typically contain a certain number of parameters adjusted to reproduce nuclear and hypernuclear
observables, and neutron star properties. Relativistic mean field (RMF) models [3] and models
based on the Skyrme-type interactions [4] are among the most commonly used ones. Microscopic
approaches, on the other hand, are based on realistic two-body baryon-baryon interactions that de-
scribe the scattering data in free space. These realistic interactions have been mainly constructed
within the framework of a meson-exchange theory [10, 11], although recently a new approach
based on chiral perturbation theory has emerged as a powerful tool [12]. In order to obtain the
EoS one has to solve then a very complicated many-body problem [13]. A great difficulty of this
problem lies in the treatment of the repulsive core, which dominates the short-range behavior of
the interaction. Although many different microscopic many-body methods have been extensively
used to study nuclear matter, very few of these have been extended to hypernuclear sector. To my
knowledge, these many-body methods include the Brueckner–Hartree–Fock (BHF) approximation
[5] of the Brueckner–Bethe–Goldstone theory, the Hartree–Fock theory based on the soft Vlow k

interactions [6] and the Dirac–Brueckner–Hartree–Fock theory [7, 8]. Very recently the Auxiliary
Field Diffusion Monte Carlo method [9] was also extended to the hyperonic sector.

All these approaches agree that hyperons may appear in the inner core of neutron stars at
densities around ∼ (2−3)×ρ0. At such densities, the neutron chemical potential is large enough
to make the conversion of a neutron into hyperon energetically favorable. This conversion relieves
the Fermi pressure exerted by nucleons and makes the EoS softer, which is illustrated in panel (a)
of Fig. 1 for a generic model with (black solid line) and without (red dashed line) hyperons. As a
consequence (see panel (b)) the masses of the stars with central densities beyond the onset density
of the hyperons are lower and the maximum mass of hyperonic stars is substantially reduced. In
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microscopic calculations (see e.g., Refs. [5, 6]), the reduction of the maximum mass can be even
below the “canonical” one of 1.4−1.5M� [14]. This is not the case, however, in phenomenological
calculations which find maximum masses compatible with the canonical value above. In fact, most
relativistic models including hyperons predict maximum masses in the range 1.4−1.8M� [3].

Although the presence of hyperons in neutron stars seems to be energetically unavoidable, the
strong softening of the EoS associated with the onset of hyperons (notably in microscopic mod-
els) leads to maximum masses not compatible with observations. This controversy is known as
hyperon (or hyperonization) puzzle, which is a subject of current intensive research. The discrep-
ancy between the theory and observations became more dramatic after the recent measurements
of unusually high masses of the millisecond pulsars PSR J1903+0327 (1.667± 0.021) [15], PSR
J1614-2230 (1.97±0.04M�) [16], and PSR J0348+0432 (2.01±0.04M�) [17] which rule out al-
most all currently proposed EoS with hyperons (both microscopic and phenomenological).

To solve this problem a mechanism is needed that could provide the additional repulsion that
makes the EoS stiffer and, therefore, the maximum mass compatible with the current observa-
tional limits. Three different mechanisms that could provide such additional repulsion have been
proposed: (i) more repulsive hyperon-hyperon interactions in relativistic density functional meth-
ods driven by either repulsive vector mesons exchanges [18, 19, 20, 21] or less-attractive scalar
σ meson exchange [22] (ii) repulsive hyperonic three-body forces [23, 24, 25, 26] and (iii) phase
transition to deconfined quark matter at densities below the hyperon threshold [30, 31, 32, 33, 34].
The remainder of this Section contains a discussion of each of these solutions which is followed by
a comment on the possible roles played by the ∆ isobar and kaon condensation in neutron stars.

2.1 Hyperon-hyperon repulsion

This solution, which has been mainly explored in the context of RMF models (see e.g., Refs.
[18, 19, 20, 21, 22]), replies on the well-known fact that in meson-exchange models of nuclear
forces vector mesons generate repulsion at short distances while σ -meson is responsible for inter-
mediate range attraction. If the interaction of hyperons with vector mesons is repulsive enough or
the attraction driven by σ -meson is weak enough the EoS could be sufficiently stiff to explain the
current pulsar mass observations. The modifications of the strength of meson exchanges must be
consistent with the hypernuclear data which requires, at least, the ΛN interaction to be attractive
and suitable tuned to the hypernuclear data [35]. Such tuning is not required if the repulsive vec-
tor meson interactions acts only among the hyperons through the exchange of the strange φ vector
meson (which couples only to hyperons). In this way, the onset of hyperons is shifted to higher den-
sities and neutron stars with maximum masses larger than 2M� and a significant hyperon fraction
can be successfully obtained. However, it is also possible to tune the interactions of non-strange
mesons to accommodate the hypernuclear data and astrophysical constraints on maximum masses
of neutron stars in the framework of relativistic density functional theories (for such an approach
see e.g. Ref. [22]). For more details the interested reader is referred to the original recent work
quoted above.

2.2 Hyperonic three-body forces

It is well known that the three-nucleon forces in the nuclear Hamiltonian are fundamental in-
gredients that are needed to reproduce properly the properties of few-nucleon systems as well as the
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empirical saturation point of symmetric nuclear matter in non-relativistic many-body approaches.
Therefore, it seems natural to suggest that three-body forces involving one or more hyperons (i.e.,
NNY, NYY and YYY) could provide additional repulsion (already established in the case of three-
nucleon forces) that can solve the hyperon puzzle. Indeed if three-body forces involving hyperons
are repulsive enough they can make the EoS stiffer at high densities and, therefore, make the
maximum mass of the star compatible with the recent observations. This idea was suggested even
before the observation of neutron stars with∼ 2M� (see e.g., Ref. [23]), and it has been explored by
a number of authors in the last years [24, 25, 26]. However, no general consensus has been reached
regarding the role played by the hyperonic three-body forces in solving the hyperon puzzle. Refs.
[23, 25] find that the inclusion of hyperonic three-body forces is sufficient to obtain hyperon stars
with masses of the order of 2M�. Ref. [24] finds that the largest maximum mass attainable within
their model is 1.6M�. The results of Ref. [26] are not conclusive enough because they strongly
depend on the ΛNN force employed. To conclude, it seems that hyperonic three-body forces offer
an interesting microscopic solution to the hyperon puzzle, however the uncertainties involved in the
physics of hyperonic three-body forces are too large at the moment to make a definite conclusion
possible.

2.3 Quarks in neutron stars

Several authors have suggested that an early phase transition from hadronic mater to decon-
fined quark matter at densities below the hyperon threshold could provide a solution to the hyperon
puzzle. Therefore, massive neutron stars could actually be hybrid stars with a stiff quark matter
core. The question that arises then is whether quarks can provide sufficient repulsion to produce
a 2M� neutron star. To yield maximum masses larger than 2M�, quark matter should have two
important and necessary features: (i) a significant overall quark-quark repulsion to maintain stiff
EoS, for example, in vector channels and (ii) a strong enough attraction in certain channels which
leads to color superconductivity needed to make the deconfined quark matter phase energetically
favorable over the hadronic one [36]. Several models of hybrid stars with the necessary properties
to generate 2M� neutron stars have been proposed [27, 28, 29, 30, 31, 32, 33, 34]. Conversely, the
observation of 2M� neutron stars may also helped to impose important constraints on the models
of hybrid and strange stars with a quark matter core, and improve our present understanding of the
hadron-quark phase transition.

2.4 ∆ isobar and kaon condensation in neutron stars

An alternative way to circumvent the hyperon puzzle is to invoke the appearance of other
hadronic degrees of freedom such as for instance the ∆ isobar or meson condensates that shift the
onset of hyperons to higher densities.

The ∆ isobar is often neglected in the studies of neutron stars because its threshold density
was found to be higher than the typical densities prevalent in cores of neutron stars. Neverthe-
less, it has been recently shown by Drago et al., [37] that the onset of the ∆ depends crucially
on the density-dependence of the slope of the nuclear symmetry energy, i. e., the parameter
L = 3ρ0(∂Esym(ρ)/∂ρ)ρ0 . By using a state-of-the-art EoS and recent experimental constraints
on L, these authors showed that the ∆ isobar could actually appear before the hyperons in neutron
star interiors. However, they found also that, as soon as the ∆ is present the EoS, as in the case of
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(a): Including hyperons (b): Only nucleons

Figure 2: Gravitational mass as a function of the baryonic mass for neutrino-free (solid lines) and neutrino-
trapped (dashed lines) matter. Panel (a) shows the results for matter containing nucleons and hyperons,
whereas the results for pure nucleonic mater are shown in panel (b). Dotted horizontal and vertical lines
show the window of metastability in the gravitational and baryonic masses. Figure adapted from Ref. [45].

hyperons, becomes considerably softer and, consequently, the maximum mass is reduced to values
below the current observational limit. Thus, the hyperon puzzle is effectively replaced with the
so-called ∆ puzzle.

The possible existence of a Bose–Einstein condensate of negative kaons in the inner core of
neutron stars has also been extensively considered in the literature (see e.g., [38, 39, 40, 41, 42, 43]
and references therein). As the density of stellar matter increases, the K− chemical potential, µK− ,
is lowered by the attractive vector meson field originating from dense nucleonic mater. When
µK− becomes smaller than the electron chemical potential µe the process e−→ K−+νe becomes
energetically possible. The critical density for this process was calculated to be in the range 2.5−
5ρ0 [41, 42]. However, as in the case of the ∆, the appearance of the kaon condensation induces
also a strong softening of the EoS and consequently leads to a reduction of the maximum mass to
values below the current observational limits. The interested reader is referred to the original work
on this subject [38, 39, 40, 41, 42, 43] for a comprehensive description of the implications of kaon
condensation on the structure and evolution of neutron stars.

3. Hyperon stars at birth and neutron star cooling

As pointed out in the introduction, neutron stars are formed in Type-II, Ib or Ic supernova
explosions. The properties of newly born neutron stars are affected by the thermal effects and
neutrino trapping. These two effects have a strong influence on the overall stiffness of the EoS
and the composition of the star. In particular (see e.g., [44, 45, 46]) matter becomes more proton
rich, the number of muons is significantly reduced, and the onset of hyperons is shifted to higher
densities. In addition, the number of strange particles is on average smaller and the EoS is stiffer
in comparison with the cold and neutrino-free case.
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A very important implication of neutrino trapping in dense matter is the possibility of having
metastable neutron stars and a delayed formation of a “low-mass” (M = 1− 2M�) black hole.
This is illustrated in Fig. 2 for the case of a BHF calculation of Ref. [45]. The figure shows the
gravitational mass MG of the star as a function of its baryonic mass MB. If hyperons are present
(panel (a)), then deleptonization lowers the range of gravitational masses that can be supported by
the EoS from about 1.59M� to about 1.28M� (see dotted horizontal lines in the figure). Since most
of the matter accretion on the forming neutron star happens in a very early stages after birth (t < 1
s), to a good approximation the neutron star baryonic mass stays constant during the evolution from
the initial proto-neutron star configuration to the final neutrino-free one. Then, for this particular
model, proto-neutron stars which at birth have a gravitational mass between 1.28− 1.59M� (a
baryonic mass between 1.40−1.72M�) will be stabilized by neutrino trapping effects long enough
to carry out nucleosynthesis accompanying a Type-II supernova explosion. After neutrinos leave
the star, the EoS is softened and it cannot support anymore the star against its own gravity. The
newborn star collapses then to a black hole [44]. On the other hand, if only nucleons are considered
to be the relevant baryonic degrees of freedom (panel (b)), no metastability occurs and a black
hole is unlikely to be formed during the deleptonization since for each initial neutrino-trapping
configuration there exist always a final stable neutrino-free one. If a black hole were to form from
a star with only nucleons, it is much more likely to form during the post-bounce accretion stage.

The cooling of the newly born hot neutron stars is driven first by the neutrino emission from
the interior, and then by the emission of photons at the surface. Neutrino emission processes can
be divided into slow and fast processes depending on whether one or two baryons participate. The
simplest possible neutrino emission process is the so-called direct Urca process (n→ p+ l + ν̄l ,
p+ l→ n+νl). This is a fast cooling mechanism which however is only possible when the proton
fraction exceeds a critical value xDURCA ∼ 11% to 15% [47], being not possible to conserve the
momentum and energy simultaneously for lower proton fractions. Other neutrino processes which
lead to medium or slow cooling scenarios, but are operative at any density and proton fraction,
are the so-called modified Urca processes (N + n→ N + p+ l + ν̄l , N + p+ l → N + n+ νl), the
bremsstrahlung (N+N→ N+N+ν + ν̄), or the Cooper pair formation (n+n→ [nn]+ν + ν̄ , p+
p→ [pp]+ν + ν̄), this last operating only when the temperature of the star drops below the critical
temperature for neutron superfluidity or proton superconductivity. If hyperons are present in the
neutron star interior new neutrino emission processes, like e.g., Y→B+ l+ ν̄l , may occur providing
additional fast cooling mechanisms. Such additional rapid cooling mechanisms, however, can lead
to surface temperatures much lower than that observed, unless they are suppressed by hyperon
pairing gaps. Therefore, the study of hyperon superfluidity becomes of particular interest since
it could play a key role in the thermal history of neutron stars. While the presence of superfluid
neutrons in the inner crust of neutron stars, and superfluid neutrons together with superconducting
protons in their quantum fluid interior is well established and has been the subject of many studies,
there have been very few studies of hyperon pairing, see Refs. [48].

4. Hyperons and the r-mode instability of neutron stars

It is well known that the upper limit on the rotational frequency of a neutron star is set by its
Kepler frequency ΩKepler, above which matter is ejected from the star’s equator [49]. However, a
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neutron star may be unstable against some perturbations which prevent it from reaching rotational
frequencies as high as ΩKepler, setting, therefore, a more stringent limit on its rotation [50]. Many
different instabilities can operate in a neutron star. Among them, the so called r-mode instabil-
ity [51], a toroidal mode of oscillation whose restoring force is the Coriolis force, is particularly
interesting. This oscillation mode leads to the emission of gravitational waves in hot and rapidly
rotating neutron stars though the Chandrasekhar–Friedman–Schutz mechanism [52]. Gravitational
radiation makes an r-mode grow, whereas viscosity stabilizes it. Therefore, an r-mode is unstable if
the gravitational radiation driving time is shorter than the damping time due to viscous processes.
In this case, a rapidly rotating neutron star could transfer a significant fraction of its rotational
energy and angular momentum to the emitted gravitational waves. These waves can provide in-
valuable information on the internal structure of the star and thus put constraints on the EoS. The
recent direct detection of gravitational waves emitted by a merger of two black holes by the LIGO
collaboration [53] strengthens the perspectives of studying neutron stars in the gravitational wave
spectrum including via astro-seismology.

The bulk (ξ ) and the shear (η) viscosities provide the main mechanisms for the dissipation
of r-modes as well as other oscillation modes in neutron stars. The bulk viscosity is the dominant
one at high temperatures (T > 109 K) and, therefore, it is important for hot young neutron stars. It
is produced when the pulsation modes induce variations in pressure and density that drive the star
away from β -equilibrium. As a result, energy is dissipated as the weak interaction tries to reestab-
lish the equilibrium. In the absence of hyperons or other exotic components, the bulk viscosity of
neutron star matter is mainly determined by the reactions of direct and modified Urca processes.
However, as soon as hyperons appear new mechanisms such as weak non-leptonic hyperon reac-
tions (N+N↔N+Y , N+Y ↔Y +Y ), hyperonic direct Urca (Y → B+ l+ ν̄l , B+ l→Y +νl) and
modified Urca (B′+Y → B′+B+ l+ ν̄l , B′+B+ l→ B′+Y +νl) processes, or strong interactions
(Y +Y ↔ N +Y , N +Ξ↔ Y +Y , Y +Y ↔ Y +Y ) contribute to the bulk viscosity and dominate it
for ρ > 2− 3ρ0. For more details on the role of hyperons in damping stellar oscillations via bulk
viscosity see Refs. [54].

The time dependence of an r-mode oscillation is given by eiωt−t/τ , where ω is the frequency
of the mode, and τ is an overall time scale of the mode which describes both its exponential growth
due to gravitational wave emission as well as its decay due to viscous damping. It can be written
as 1/τ(Ω,T ) =−1/τGW +1/τξ +1/τη , where τGW is the characteristic time-scale associated with
emission of gravitational waves, τξ is related to the damping via bulk viscosity, and τη via shear
viscosity. If τGW is shorter than both τξ and τη the mode will exponentially grow, whereas in the
opposite case it will be damped away. For each star at a given temperature T one can define a
critical angular velocity Ωc as the smallest root of the equation 1/τ(Ωc,T ) = 0. This equation
defines the boundary of the so-called r-mode instability region. A star will be stable against the
r-mode instability if its angular velocity is smaller than its corresponding Ωc. On the contrary, a star
with Ω > Ωc will develop an instability that will cause a rapid loss of angular momentum through
gravitational radiation until its angular velocity falls below the critical value. Panel (a) of Fig. 3
shows the r-mode instability region for a pure nucleonic (black solid line) and a hyperonic (red
dashed line) star with M = 1.27M� [55]. The contributions to the bulk viscosity from direct and
modified nucleonic Urca processes as well as from the weak non-leptonic process n+n↔ p+Σ−

included in the calculation are shown in the panel (b) of the figure. It is clearly seen that the widow
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Figure 3: Panel (a): r-mode instability region for a pure nucleonic and a hyperonic star with 1.27M�. The
frequency of the mode is taken as ω = 104 s−1. Panel (b): Bulk viscosity as a function of the density for
T = 109 K and ω = 104 s−1. Contributions direct and modified nucleonic Urca processes as well as from
the weak non-leptonic process n+n↔ p+Σ− are included. Figure adapted from Ref. [55].

of the r-mode instability is smaller for hyperonic stars, which is the direct consequence of the
fact that the bulk viscosity of hyperon rich matter is larger than for purely nucleonic matter and,
therefore, the damping in the former case is more effective.

5. Summary

In this review article I discussed the main effects of hyperons on the properties of neutron stars
with an emphasis on the so-called “hyperon puzzle”, i.e., the problem of the strong softening of
the EoS of dense matter due to the appearance of hyperons which leads to maximum masses of
compact stars that are not compatible with the recent observations of ∼ 2M� millisecond pulsars.
I have discussed three different solutions proposed to tackle this problem: (i) more repulsion in
hyperon-hyperon interactions within the density functional theories of hypernuclear matter in the
vector and/or scalar mesons exchange channels; (ii) repulsive hyperonic three-body forces in the ab
initio microscopic calculations, and (iii) a phase transition to deconfined quark matter at densities
below the hyperon threshold. I have also presented a discussion of how the presence of hyperons
will affect the cooling of neutron stars and the r-mode instability window through modifications of
microscopic input of weak interaction rates and transport coefficients of dense matter.
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