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1. Introduction

During the last few decades, physics beyond the Standard Model (SM) was guided from the
problem of mass hierarchy. This can be formulated as the question of why gravity appears to us
so weak compared to the other three known fundamental interactions corresponding to the elec-
tromagnetic, weak and strong nuclear forces. Indeed, gravitational interactions are suppressed by
a very high energy scale, the Planck massMP ∼ 1019 GeV, associated to a lengthlP ∼ 10−35 m,
where they are expected to become important. In a quantum theory, the hierarchy implies a se-
vere fine tuning of the fundamental parameters in more than 30decimal places in order to keep
the masses of elementary particles at their observed values. The reason is that quantum radiative
corrections to all masses generated by the Higgs vacuum expectation value (VEV) are proportional
to the ultraviolet cutoff which in the presence of gravity isfixed by the Planck mass. As a result,
all masses are “attracted" to become about 1016 times heavier than their observed values.

Besides compositeness, there are two main ideas that have been proposed and studied ex-
tensively during the last decades, corresponding to different approaches of dealing with the mass
hierarchy problem. (1) Low energy supersymmetry with all superparticle masses in the TeV region.
Indeed, in the limit of exact supersymmetry, quadraticallydivergent corrections to the Higgs self-
energy are exactly cancelled, while in the softly broken case, they are cutoff by the supersymmetry
breaking mass splittings. (2) TeV scale strings, in which quadratic divergences are cutoff by the
string scale and low energy supersymmetry is not needed. Both ideas are experimentally testable
at high-energy particle colliders and in particular at LHC.Below, I discuss their implementation in
string theory.

The appropriate and most convenient framework for low energy supersymmetry and grand
unification is the perturbative heterotic string. Indeed, in this theory, gravity and gauge interactions
have the same origin, as massless modes of the closed heterotic string, and they are unified at the
string scaleMs. As a result, the Planck massMP is predicted to be proportional toMs:

MP = Ms/g, (1.1)

whereg is the gauge coupling. In the simplest constructions all gauge couplings are the same at the
string scale, given by the four-dimensional (4d) string coupling, and thus no grand unified group
is needed for unification. In our conventionsαGUT = g2 ≃ 0.04, leading to a discrepancy between
the string and grand unification scaleMGUT by almost two orders of magnitude. Explaining this
gap introduces in general new parameters or a new scale, and the predictive power is essentially
lost. This is the main defect of this framework, which remains though an open and interesting
possibility [1].

The other idea has as natural framework of realization type Istring theory with D-branes.
Unlike in the heterotic string, gauge and gravitational interactions have now different origin. The
latter are described again by closed strings, while the former emerge as excitations of open strings
with endpoints confined on D-branes [2]. This leads to a braneworld description of our universe,
which should be localized on a hypersurface, i.e. a membraneextended inp spatial dimensions,
called p-brane (see Fig. 1). Closed strings propagate in all nine dimensions of string theory: in
those extended along thep-brane, called parallel, as well as in the transverse ones. On the contrary,
open strings are attached on thep-brane. Obviously, ourp-brane world must have at least the three
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Figure 1: In the type I string framework, our Universe contains, besides the three known spatial dimensions
(denoted by a single blue line), some extra dimensions (d‖ = p− 3) parallel to our worldp-brane (green
plane) where endpoints of open strings are confined, as well as some transverse dimensions (yellow space)
where only gravity described by closed strings can propagate.

known dimensions of space. But it may contain more: the extrad‖ = p−3 parallel dimensions must
have a finite size, in order to be unobservable at present energies, and can be as large as TeV−1 ∼
10−18 m [3]. On the other hand, transverse dimensions interact with us only gravitationally and
experimental bounds are much weaker: their size should be less than about 0.1 mm [4].

2. Framework of low scale strings

In type I theory, the different origin of gauge and gravitational interactions implies that the
relation between the Planck and string scales is not linear as (1.1) of the heterotic string. The re-
quirement that string theory should be weakly coupled, constrain the size of all parallel dimensions
to be of order of the string length, while transverse dimensions remain unrestricted. Assuming an
isotropic transverse space ofn= 9− p compact dimensions of common radiusR⊥, one finds:

M2
P =

1
g4 M2+n

s Rn
⊥ , gs ≃ g2 . (2.1)

wheregs is the string coupling. It follows that the type I string scale can be chosen hierarchically
smaller than the Planck mass at the expense of introducing extra large transverse dimensions felt
only by gravity, while keeping the string coupling small [5]. The weakness of 4d gravity compared
to gauge interactions (ratioMW/MP) is then attributed to the largeness of the transverse spaceR⊥
compared to the string lengthls = M−1

s .
An important property of these models is that gravity becomes effectively(4+n)-dimensional

with a strength comparable to those of gauge interactions atthe string scale. The first relation of
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Eq. (2.1) can be understood as a consequence of the(4+ n)-dimensional Gauss law for gravity,
with

M(4+n)
∗ = M2+n

s /g4 (2.2)

the effective scale of gravity in 4+n dimensions. TakingMs≃ 1 TeV, one finds a size for the extra
dimensionsR⊥ varying from 108 km, .1 mm, down to a Fermi forn= 1,2, or 6 large dimensions,
respectively. This shows that whilen = 1 is excluded,n ≥ 2 is allowed by present experimental
bounds on gravitational forces [4, 6]. Thus, in these models, gravity appears to us very weak at
macroscopic scales because its intensity is spread in the “hidden" extra dimensions. At distances
shorter thanR⊥, it should deviate from Newton’s law, which may be possible to explore in labora-
tory experiments (see Fig. 2).

Figure 2: Torsion pendulum that tested Newton’s law at 55µm.

2.1 Experimental implications in accelerators

We now turn to the experimental predictions of TeV scale strings. Their main implications
in particle accelerators are of four types, in correspondence with the four different sectors that are
generally present:

1. New compactified parallel dimensions; In this caseRMs >∼ 1, and the associated compact-
ification scaleR−1

‖ would be the first scale of new physics that should be found increasing
the beam energy [3, 7]. The main consequence is the existenceof KK excitations for all SM
particles that propagate along the extra parallel dimensions. These can be produced on-shell
at LHC as new resonances [8] (see Fig. 3).

2. New extra large transverse dimensions and low scale quantum gravity,. The main experi-
mental signal is gravitational radiation in the bulk from any physical process on the world-
brane [9].
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Figure 3: Production of the first KK modes of the photon and of theZ boson at LHC, decaying to electron-
positron pairs. The number of expected events is plotted as afunction of the energy of the pair in GeV.

3. Genuine string and quantum gravity effects. Direct production of string resonances in hadron
colliders leads generically to a universal deviation from Standard Model in jet distribu-
tion [10]. In particular, the first Regge excitation of the gluon has spin 2 and a width an
order of magnitude lower than the string scale, leading to a characteristic peak in dijet pro-
duction; similarly, the first excitations of quarks have spin 3/2. The dijet (left) andγ + jet
(right) cross-sections are shown in Fig. 4 for LHC energies,while Fig 5 shows the Signal-to-
Noise ratio of the lowest massive Regge excitations for a 100TeV future hadron collider [11].
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Figure 4: Production of the first Regge excitations at LHC in the dijet (left) andγ + jet (right) channels, for
Ms = 5 TeV. The cross-section is plotted as a function of the invariant massM.
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Figure 5: Dijet signal-to-noise ratio of the lowestn= 1 (left) andn= 2 (right) Regge excitations for a future
100 TeV hadron collider.

4. ExtraU(1)’s arising generically in D-brane models as part of unitary gauge group factors.
They obtain in general masses due to four- or higher-dimensional anomalies, via the so-
called Green-Schwarz anomaly cancellation mechanism involving axionic fields from the
closed string sector. The resulting masses are therefore suppressed by a loop factor compared
to the string scale. From the low energy point of view, they gauge global symmetries of
the Standard Model, such as the baryon and lepton number. An important property of the
anomaly cancellation mechanism is that the anomalousU(1) gauge bosons acquire masses
leaving behind the corresponding global symmetries unbroken in perturbation theory. Thus,
this is a way to guarantee proton stability (from unbroken baryon number) and avoid large
Majorana neutrino masses (from unbroken lepton number) dueto dimension-5 operators
involving two higgses and two leptons that are suppressed only by the TeV string scale. Such
extraU(1)s have interesting properties and distinct experimental signatures [12, 13, 14].

5. Concerning possible micro-black hole production, note that a string size black hole has a
horizon radiusrH ∼ 1 in string units, while the Newton’s constant behaves asGN ∼ g2

s. It
follows that the mass of ad-dimensional black hole is [15]:MBH ∼ rd/2−1

H /GN ≃ 1/g2
s. Using

the value of the SM gauge couplingsgs ≃ g2 ∼ 0.1, one finds that the energy thresholdMBH

of micro-black hole production is about four orders of magnitude higher than the string scale,
implying that one would produce 104 string states before reachingMBH.

On the other hand, there exist interesting implications in non accelerator table-top experiments due
to the exchange of gravitons or other possible states livingin the bulk.

3. Large number of species

Here, we point out that low scale gravity with large extra dimensions is actually a particular
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case of a more general framework, where the UV cutoff is lowerthan the Planck scale due to the
existence of a large number of particle species coupled to gravity [16]. Indeed, it was shown that
the effective UV cutoffMUV is given by

M2
UV = M2

P/N , (3.1)

where the counting of independent speciesN takes into account all particles which are not broad
resonances, having a width less than their mass. The derivation is based on black hole evaporation
but here we present a shorter argument using quantum information storage [17]. Consider a pixel of
sizeL containingN species storing information. The energy required to localizeN wave functions
is then given byN/L, associated to a Schwarzschild radiusRs = N/LM2

P. The latter must be less
than the pixel size in order to avoid the collapse of such a system to a black hole,Rs ≤ L, implying
a minimum sizeL ≥ Lmin with Lmin =

√
N/MP associated precisely to the effective UV cutoff

MUV = Lmin given in eq. (3.1). ImposingMUV ≃ 1 TeV, one should then haveN ∼ 1032 particle
species below about the TeV scale!

In the string theory context, there are two ways of realizingsuch a large number of particle
species by lowering the string scale at a TeV:

1. In large volume compactifications with the SM localized onD-brane stacks, as described in
the previous section. The particle species are then the Kaluza-Klein (KK) excitations of the
graviton (and other possible bulk modes) associated to the large extra dimensions, given by
N = Rn

⊥ln
s , up to energies of orderMUV ≃ Ms.

2. By introducing an infinitesimal string couplinggs ≃ 10−16 with the SM localized on Neveu-
Schwarz NS5-branes in the framework of little strings [18].In this case, the particle species
are the effective number of string modes that contribute to the black hole bound [19]:N =

1/g2
s and gravity does not become strong atMs ∼ O(TeV).

Note that both TeV string realizations above are compatiblewith the general expression (2.1), but
in the second case there is no relation between the string andgauge couplings.

4. Standard Model on D-branes

The gauge group closest to the Standard Model one can easily obtain with D-branes isU(3)×
U(2)×U(1). The first factor arises from three coincident “color" D-branes. An open string with
one end on them is a triplet underSU(3) and carries the sameU(1) charge for all three compo-
nents. Thus, theU(1) factor ofU(3) has to be identified withgaugedbaryon number. Similarly,
U(2) arises from two coincident “weak" D-branes and the corresponding abelian factor is identi-
fied with gaugedweak-doublet number. Finally, an extraU(1) D-brane is necessary in order to
accommodate the Standard Model without breaking the baryonnumber [12]. In principle thisU(1)
brane can be chosen to be independent of the other two collections with its own gauge coupling.
To improve the predictability of the model, we choose to put it on top of either the color or the
weak D-branes [13]. In either case, the model has two independent gauge couplingsg3 andg2

corresponding, respectively, to the gauge groupsU(3) andU(2). TheU(1) gauge couplingg1 is
equal to eitherg3 or g2.

7
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Let us denote byQ3, Q2 and Q1 the threeU(1) charges ofU(3)×U(2)×U(1), in a self
explanatory notation. UnderSU(3)×SU(2)×U(1)3×U(1)2×U(1)1, the members of a family of
quarks and leptons have the following quantum numbers:

Q (3,2;1,w,0)1/6

uc (3̄,1;−1,0,x)−2/3

dc (3̄,1;−1,0,y)1/3 (4.1)

L (1,2;0,1,z)−1/2

lc (1,1;0,0,1)1

The values of theU(1) chargesx,y,z,w will be fixed below so that they lead to the right hyper-
charges, shown for completeness as subscripts.

It turns out that there are two possible ways of embedding theStandard Model particle spec-
trum on these stacks of branes [12], which are shown pictorially in Fig. 6. The quark doubletQ

Figure 6: A minimal Standard Model embedding on D-branes.

corresponds necessarily to a massless excitation of an openstring with its two ends on the two
different collections of branes (color and weak). As seen from the figure, a fourth brane stack is
needed for a complete embedding, which is chosen to be aU(1)b extended in the bulk. This is
welcome since one can accommodate right handed neutrinos asopen string states on the bulk with
sufficiently small Yukawa couplings suppressed by the largevolume of the bulk [20]. The two
models are obtained by an exchange of the up and down antiquarks, uc anddc, which correspond
to open strings with one end on the color branes and the other either on theU(1) brane, or on the
U(1)b in the bulk. The lepton doubletL arises from an open string stretched between the weak
branes andU(1)b, while the antileptonlc corresponds to a string with one end on theU(1) brane
and the other in the bulk. For completeness, we also show the two possible Higgs statesHu andHd

that are both necessary in order to give tree-level masses toall quarks and leptons of the heaviest
generation.

8
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4.1 Hypercharge embedding and the weak angle

The weak hyperchargeY is a linear combination of the threeU(1)’s:

Y = Q1+
1
2

Q2+c3Q3 ; c3 =−1/3 or 2/3, (4.2)

whereQN denotes theU(1) generator ofU(N) normalized so that the fundamental representation
of SU(N) has unit charge. The correspondingU(1) charges appearing in eq. (4.1) arex=−1 or 0,
y= 0 or 1,z=−1, andw= 1 or−1, for c3 =−1/3 or 2/3, respectively. The hypercharge coupling
gY is given by1:

1

g2
Y

=
2

g2
1

+
4c2

2

g2
2

+
6c2

3

g2
3

. (4.3)

It follows that the weak angle sin2 θW, is given by:

sin2θW ≡ g2
Y

g2
2+g2

Y

=
1

2+2g2
2/g2

1+6c2
3g2

2/g2
3

, (4.4)

wheregN is the gauge coupling ofSU(N) and g1 = g2 or g1 = g3 at the string scale. In order
to compare the theoretical predictions with the experimental value of sin2 θW at Ms, we plot in
Fig. 7 the corresponding curves as functions ofMs. The solid line is the experimental curve. The
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Figure 7: The experimental value of sin2 θW (thick curve), and the theoretical predictions.

dashed line is the plot of the function (4.4) forg1 = g2 with c3 = −1/3 while the dotted-dashed
line corresponds tog1 = g3 with c3 = 2/3. The other two possibilities are not shown because they
lead to a value ofMs which is too high to protect the hierarchy. Thus, the second case, where the
U(1) brane is on top of the color branes, is compatible with low energy data forMs ∼ 6−8 TeV
andgs ≃ 0.9.

From Eq. (4.4) and Fig. 7, we find the ratio of theSU(2) andSU(3) gauge couplings at the
string scale to beα2/α3 ∼ 0.4. This ratio can be arranged by an appropriate choice of the relevant
moduli. For instance, one may choose the color andU(1) branes to be D3 branes while the weak

1The gauge couplingsg2,3 are determined at the tree-level by the string coupling and other moduli, like radii of
longitudinal dimensions. In higher orders, they also receive string threshold corrections.
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branes to be D7 branes. Then, the ratio of couplings above canbe explained by choosing the volume
of the four compact dimensions of the seven branes to beV4 = 2.5 in string units. This being larger
than one is consistent with the picture above. Moreover it predicts an interesting spectrum of KK
states for the Standard model, different from the naive choices that have appeared hitherto: the only
Standard Model particles that have KK descendants are the W bosons as well as the hypercharge
gauge boson. However, since the hypercharge is a linear combination of the threeU(1)’s, the
massiveU(1) KK gauge bosons do not couple to the hypercharge but to the weak doublet number.

4.2 The fate ofU(1)’s, proton stability and neutrino masses

It is easy to see that the remaining threeU(1) combinations orthogonal toY are anomalous.
In particular there are mixed anomalies with theSU(2) andSU(3) gauge groups of the Standard
Model. These anomalies are cancelled by three axions comingfrom the closed string RR (Ra-
mond) sector, via the standard Green-Schwarz mechanism [21]. The mixed anomalies with the
non-anomalous hypercharge are also cancelled by dimensionfive Chern-Simmons type of interac-
tions [12]. An important property of the above Green-Schwarz anomaly cancellation mechanism
is that the anomalousU(1) gauge bosons acquire masses leaving behind the corresponding global
symmetries. This is in contrast to what would had happened inthe case of an ordinary Higgs
mechanism. These global symmetries remain exact to all orders in type I string perturbation theory
around the orientifold vacuum. This follows from the topological nature of Chan-Paton charges
in all string amplitudes. On the other hand, one expects non-perturbative violation of global sym-
metries and consequently exponentially small in the stringcoupling, as long as the vacuum stays
at the orientifold point. Thus, allU(1) charges are conserved and sinceQ3 is the baryon number,
proton stability is guaranteed.

Another linear combination of theU(1)’s is the lepton number. Lepton number conservation
is important for the extra dimensional neutrino mass suppression mechanism described above, that
can be destabilized by the presence of a large Majorana neutrino mass term. Such a term can be
generated by the lepton-number violating dimension five effective operatorLLHH that leads, in
the case of TeV string scale models, to a Majorana mass of the order of a few GeV. Even if we
manage to eliminate this operator in some particular model,higher order operators would also give
unacceptably large contributions, as we focus on models in which the ratio between the Higgs
vacuum expectation value and the string scale is just of order O(1/10). The best way to protect
tiny neutrino masses from such contributions is to impose lepton number conservation.

A bulk neutrino propagating in 4+ n dimensions can be decomposed in a series of 4d KK
excitations denoted collectively by{m}:

Skin = Rn
⊥

∫

d4x ∑
{m}

{

ν̄Rm/∂νRm+ ν̄c
Rm/∂νc

Rm+
m
R⊥

νRmνc
Rm+c.c.

}

, (4.5)

whereνR andνc
R are the two Weyl components of the Dirac spinor and for simplicity we considered

a common compactification radiusR⊥. On the other hand, there is a localized interaction ofνR with
the Higgs field and the lepton doublet, which leads to mass terms between the left-handed neutrino
and the KK statesνRm, upon the Higgs VEVv:

Sint = gs

∫

d4xH(x)L(x)νR(x,y= 0) → gsv

Rn/2
⊥

∑
m

νLνRm, (4.6)

10
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in strings units. Since the mass mixinggsv/Rn/2
⊥ is much smaller than the KK mass 1/R⊥, it can

be neglected for all the excitations except for the zero-mode νR0, which gets a Dirac mass with the
left-handed neutrino

mν ≃ gsv

Rn/2
⊥

≃ v
Ms

Mp
≃ 10−3−10−2 eV, (4.7)

for Ms ≃ 1− 10 TeV, where the relation (2.1) was used. In principle, withone bulk neutrino,
one could try to explain both solar and atmospheric neutrinooscillations using also its first KK
excitation. However, the later behaves like a sterile neutrino which is now excluded experimentally.
Therefore, one has to introduce three bulk species (at leasttwo) ν i

R in order to explain neutrino
oscillations in a ‘traditional way’, using their zero-modes ν i

R0 [22]. The main difference with the
usual seesaw mechanism is the Dirac nature of neutrino masses, which remains an open possibility
to be tested experimentally.

5. Minimal Standard Model embedding

In this section, we perform a general study of SM embedding inthree brane stacks with gauge
groupU(3)×U(2)×U(1) [12, 23], and present an explicit example having realistic particle con-
tent and satisfying gauge coupling unification [24]. We consider in general non oriented strings
because of the presence of the orientifold plane that gives rise to mirror branes. An open string
stretched between a brane stackU(N) and its mirror transforms in the symmetric or antisymmetric
representation, while the multiplicity of chiral fermionsis given by their intersection number.

The quark and lepton doublets (Q andL) correspond to open strings stretched between the
weak and the color orU(1) branes, respectively. On the other hand, theuc anddc antiquarks can
come from strings that are either stretched between the color andU(1) branes, or that have both
ends on the color branes (stretched between the brane stack and its orientifold image) and transform
in the antisymmetric representation ofU(3) (which is an anti-triplet). There are therefore three
possible models, depending on whether it is theuc (model A), or thedc (model B), or none of them
(model C), the state coming from the antisymmetric representation of color branes. It follows that
the antileptonlc comes in a similar way from open strings with both ends eitheron the weak brane
stack and transforming in the antisymmetric representation of U(2) which is anSU(2) singlet (in
model A), or on the abelian brane and transforming in the “symmetric" representation ofU(1) (in
models B and C). The three models are presented pictorially in Fig. 5

Thus, the members of a family of quarks and leptons have the following quantum numbers:

Model A Model B Model C

Q (3,2;1,1,0)1/6 (3,2;1,εQ,0)1/6 (3,2;1,εQ,0)1/6

uc (3̄,1;2,0,0)−2/3 (3̄,1;−1,0,1)−2/3 (3̄,1;−1,0,1)−2/3

dc (3̄,1;−1,0,εd)1/3 (3̄,1;2,0,0)1/3 (3̄,1;−1,0,−1)1/3 (5.1)

L (1,2;0,−1,εL)−1/2 (1,2;0,εL,1)−1/2 (1,2;0,εL,1)−1/2

lc (1,1;0,2,0)1 (1,1;0,0,−2)1 (1,1;0,0,−2)1

νc (1,1;0,0,2εν )0 (1,1;0,2εν ,0)0 (1,1;0,2εν ,0)0

11
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Figure 8: Pictorial representation of models A, B and C

where the last three digits after the semi-column in the brackets are the charges under the three
abelian factorsU(1)3×U(1)2×U(1), that we will callQ3, Q2 andQ1 in the following, while the
subscripts denote the corresponding hypercharges. The various sign ambiguitiesεi =±1 are due to
the fact that the corresponding abelian factor does not participate in the hypercharge combination
(see below). In the last lines, we also give the quantum numbers of a possible right-handed neutrino
in each of the three models. These are in fact all possible ways of embedding the SM spectrum in
three sets of branes.

The hypercharge combination is:

Model A : Y =−1
3

Q3+
1
2

Q2 (5.2)

Model B,C : Y =
1
6

Q3−
1
2

Q1

leading to the following expressions for the weak angle:

Model A : sin2θW =
1

2+2α2/3α3
=

3
8

∣

∣

∣

∣

α2=α3

(5.3)

Model B,C : sin2θW =
1

1+α2/2α1+α2/6α3

=
6

7+3α2/α1

∣

∣

∣

∣

α2=α3

In the second part of the above equalities, we used the unification relationα2 = α3, that can be
imposed if for instanceU(3) andU(2) branes are coincident, leading to aU(5) unified group.
Alternatively, this condition can be generally imposed under mild assumptions [24]. It follows that
model A admits natural gauge coupling unification of strong and weak interactions, and predicts
the correct value for sin2 θW = 3/8 at the unification scaleMGUT. On the other hand, model B
corresponds to the flippedSU(5) where the role ofuc anddc is interchanged together withlc and
νc between the10 and5̄ representations [25].

Besides the hypercharge combination, there are two additional U(1)’s. It is easy to check
that one of the two can be identified withB− L. For instance, in model A choosing the signs
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εd = εL =−εν =−εH = εH′ , it is given by:

B−L =−1
6

Q3+
1
2

Q2−
εd

2
Q1 . (5.4)

Finally, the above spectrum can be easily implemented with aHiggs sector, since the Higgs fieldH
has the same quantum numbers as the lepton doublet or its complex conjugate.

6. Effective Planck mass and the inflation scale

Here, we work out the consequences of the change of strength of gravity for inferring various
quantities during inflation [26], which we take to be driven by a single field for economy of dis-
cussion and because the data doesn’t compel us to consider otherwise [27]. As is to be expected,
all dimensionless observables such as the amplitude and spectral properties of the perturbations are
unaffected by the changing strength of gravity at inflationary energies. However, when one tries to
infer an absolute energy scale for inflation, one finds that it is undetermined commensurate with
(3.1) up to the unknown spectrum of universally coupled species between laboratory scales and the
inflationary scale, the details of which we elaborate upon inthe following.

According to the inflationary paradigm, the primordial perturbations observed in the CMB
were created at horizon crossing during the quasi de Sitter (dS) phase of early accelerated expan-
sion sourced by the inflaton field. Therefore all quantities that enter calculations of primordial
correlation functions (which we subsequently relate to observables in the CMB) refer to quantities
at the scale at which inflation occurred. We denote all quantities measured at the scale of infla-
tion with a starred subscript. The dominant contribution tothe temperature anisotropies comes
from adiabatic perturbations2 sourced by the comoving curvature perturbationR, defined as the
conformal factor of the 3-metrichi j in comoving gauge:

hi j (t,x) = a2(t)e2R(t,x)ĥi j ; ĥi j := exp[γi j ] (6.1)

with ∂iγi j = γii = 0 defining transverse traceless graviton perturbations. The temperature anisotropies
are characterized by the dimensionless power spectrum forR, whose amplitude is given by

PR :=
H2
∗

8π2M2∗ε∗
= A ×10−10, (6.2)

whereε∗ := −Ḣ∗/H2
∗ , H∗ being the Hubble factor during inflation. Given thatR is conserved

on super-horizon scales (in the absence of entropy perturbations), this immediately relates to the
amplitude of the late time CMB anisotropies, which fixesA ∼ 22.15 [27]. The tensor anisotropies
are characterized by the tensor power spectrum

Pγ := 2
H2
∗

π2M2∗
, (6.3)

2In what follows, we assume that all of the extra species have sufficiently suppressed couplings to the inflaton during
inflation (e.g. either through derivative couplings or as Planck suppressed interactions) so that isocurvature perturbations
are not significantly generated. This is trivially true for hidden sector fields.
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Taking the ratio of the above with (6.2), we find the tensor to scalar ratio

r∗ :=
Pγ

PR

= 16ε∗. (6.4)

Therefore any determination ofr∗, either through direct measurements of the stochastic background
of primordial gravitational waves or through their secondary effects on the polarization of the CMB
[28, 29, 30] allows us in principle to fix the scale of inflation:

H∗ = M∗

(

π2A r∗
2·1010

)1/2

:= ϒ = 1.05
√

r∗×10−4. (6.5)

We see that any measurements ofr∗ determines the scale of inflationup to our ignorance of the
effective strength of gravity at the scale H∗, given byM∗ ∼ MP√

N
, whereN is the effective number

of all universally coupled species up to the scaleH∗– whether they exist in the visible sector or
in any hidden sector. Note that as one lowers the scale of strong gravity, the maximum reheating
temperatureTi is necessarily lowered as well, since it cannot be higher than the inflation scale.
Conservatively,Ti cannot be too far below the TeV scale without spoiling the standard scenarios
of big bang cosmology– in particular, mechanisms for Leptogenesis and Baryogenesis which can
occur no lower than the electroweak scale [31]. We note as a consistency check on the above
considerations, that although additional species increase the strength of gravity, the ratioH2

∗/M2
∗

is independent ofN and is fixed by observable quantities. Therefore the effectsof strong gravity
are evidently negligible during inflation even ifM∗ is much smaller than the macroscopic strength
of gravity Mpl. Hence inflationary dynamics, in particular the dynamics ofadiabatic fluctuations
remain weakly coupled independent ofN and the usual computation of adiabatic correlators can be
implemented [32].

In the case of extra species as KK graviton modes, the fundamental higher-dimensional gravity
scale (3.1) withN ≃ Rn

⊥En
∗ at a given energy scaleE∗, for E∗ = MUV leads to the usual relation

between the 4d and(4+n)d Planck scales

M2
P = M2+n

UV Rn
⊥ . (6.6)

On the other hand, during inflationN counts all KK states with mass less than the Hubble scaleH∗:

N = (H∗R⊥)
n , (6.7)

and the effective gravity scale becomes

M∗ = MP/
√

N = MUV(MUV/H)n/2 , (6.8)

where we used the relations (6.6) and (6.8). Equation (6.5) then yields:

H∗ = M∗ϒ = MUV(MUV/H)n/2ϒ ⇒ MUVϒ2/(n+2) , (6.9)

where we used eq. (6.8). It follows thatH∗ is one to three orders of magnitude below the funda-
mental gravity scaleMUV for the range 0.001<∼ r∗ <∼ 0.1. The ratioH∗/M∗ is of course fixed by
(6.5). The inflation scaleH∗ can then be as low as the weak scale in low scale gravity modelswith
large extra dimensions, consistently with observations.
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7. Conclusions

In this note, I gave a short overview of large extra dimensions and low scale gravity in the
context of string theory that provides a consistent quantumframework of unification of all fun-
damental forces of Nature, including gravity. String theory introduces a new fundamental energy
scale associated with the string tension, or equivalently with the inverse string size. Its value can be
high, near the four-dimensional Planck mass, compatible with traditional (supersymmetric) grand
unification, or lower, up to the TeV scale providing an answeralternative to supersymmetry for
solving the so-called hierarchy problem. The appropriate framework for such a realization is the
(weakly coupled) type I theory of closed and open strings with D-branes. I have shown how the
Standard Model can be embedded in such a framework.
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