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Harmonic superspaces for N = (1,1) SYM theory

1. Motivations and contents

For the last few years, there is a stable interest in the maximally extended (with 16 super-
charges) supersymmetric gauge theories in diverse dimensions (see, e.g., [1]),

The renowned N = 4, 4D SYM theory supplied the first example of an UV finite theory. Per-
haps, it is also a completely integrable system [2]. The N = (1,1), 6D SYM is not renormalizable
by formal power counting (the coupling constant is dimensionful) but it is also expected to possess
various unique properties. In particular, it respects the so called “dual superconformal symmetry”,
like its 4D counterpart [3]. It provides the effective theory descriptions of some particular low
energy sectors of string theory, such as D5-brane dynamics. The full effective action of D5-brane,
generalizing the N = (1,1) SYM action, was conjectured to be of non-abelian Born-Infeld type
[4], [5]. The N = (1,1) SYM is anomaly free [6], as distinct from N = (1,0) SYM theory.

The N = (1,1) and N = (1,0) SYM theories can be regarded as toy models for N = 8
supergravity and its some lower N descendants, which are also non-renormalizable by the formal
counting.

The newest perturbative explicit calculations in N = (1,1) SYM show a lot of cancelations of
the UV divergencies which cannot be predicted in advance. The theory is UV finite up to 2 loops,
while at 3 loops only a single-trace (planar) counterterm of canonical dim 10 is required. The
allowed double-trace (non-planar) counterterms do not appear [7], [8], [9]. Various arguments to
explain why it happens were put forward in [10], [11], [12] [13], though the complete understanding
is still lacking. This phenomenon implies the existence of some new non-renormalization theorems.
As usual, to understand it in depth, the maximally supersymmetric off-shell formulations for N =

(1,0) and N = (1,1) SYM theories are required.
The maximal off-shell supersymmetry that one can achieve in 6D is N = (1,0) supersym-

metry. The most natural off-shell formulation of N = (1,0) SYM theory was given in harmonic
N = (1,0),6D superspace [14], [15] as a generalization of the N = 2,4D harmonic superspace
[16], [17]. This harmonic 6D formalism was further developed and applied in [18], [19], [20], [21]
and [22].

The N = (1,1) SYM theory in the harmonic formulation can be schematically represented as
a hybrid of two N =(1,0) theories, [N =(1,1) SYM] = [N =(1,0) SYM] + [6D hypermultiplets]
, with the second hidden on-shell N = (0,1) supersymmetry. How to construct higher-dimension
N = (1,1) invariants in terms of N = (1,0) superfields?

One way is to follow the “brute-force” method. One starts with the appropriate dimension
N = (1,0) SYM invariant and then completes it to N = (1,1) invariant by adding the proper
hypermultiplet terms. This approach is rather cumbersome technically and actually works only for
the lowest-order invariants. Nevertheless, based on this approach, in a recent paper [22] there was
given a new proof of the 1- and 2-loop finiteness of N = (1,1) SYM theory by demonstrating the
absence of N = (1,0) off-shell supersymmetric and gauge invariant counterterms of the canonical
dimension d = 6 and d = 8 , which would be non-vanishing on shell. However, starting with the
invariants of dimension d = 10, technical complications increase enormously.

The situation is simplified if one takes into account that for finding all admissible superfield
counterterms it is enough to stay on the mass shell. One of the main results of [22] is the develop-
ment of the new approach to constructing higher-dimension N = (1,1) invariants. It is based on
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Harmonic superspaces for N = (1,1) SYM theory

the concept of the on-shell N = (1,1) harmonic superspace with the double set of the harmonic
variables u±i ,u

±̂
A , i = 1,2;A = 1,2 pioneered in [23]. The novel point of the construction in [22] is

solving the N = (1,1) SYM constraints [25], [24] in terms of N = (1,0) superfields. Using these
techniques, the d = 8 and d = 10 invariants were explicitly built in a simple way and an essential
difference between the single- and double-trace d = 10 invariants was established. The present
contribution provides a brief account of the 6D harmonic superspace methods, with the main focus
on their recent uses in [22].

2. 6D superspaces and superfields

2.1 6D superspaces

We start by listing various N = (1,0),6D superspaces:

• The standard N = (1,0),6D superspace is parametrized by the coordinates:

z = (xM,θ a
i ) , M = 0, . . . ,5 , a = 1, . . . ,4 , i = 1,2 , (2.1)

where the Grassmann coordinates θ a
i are pseudoreal.

• The harmonic N = (1,0),6D superspace is obtained by adding SU(2) harmonics to (2.1):

Z := (z,u) = (xM,θ a
i ,u
±i) , u−i = (u+i )

∗,u+iu−i = 1 , u±i ∈ SU(2)R/U(1) . (2.2)

• The analytic N = (1,0),6D superspace is an invariant subspace of (2.2) with the halved
number of Grassmann coordinates:

ζ := (xM
(an),θ

+a,u±i)⊂ Z , xM
(an) = xM +

i
2

θ
a
k γ

M
abθ

b
l u+ku−l, θ

±a = θ
a
i u±i . (2.3)

In what follows, we will need the basic differential operators in the analytic basis of the harmonic
superspace ZA := (xM

(an),θ
+a,u±i,θ−a):

D+
a = ∂−a , D−a =−∂+a−2iθ−b

∂ab ,

D0 = u+i ∂

∂u+i −u−i ∂

∂u−i +θ
+a

∂+a−θ
−a

∂−a

D++ = ∂
+++ iθ+a

θ
+b

∂ab +θ
+a

∂−a , D−− = ∂
−−+ iθ−a

θ
−b

∂ab +θ
−a

∂+a , (2.4)

where ∂±aθ±b = δ b
a and ∂++ = u+i ∂

∂u−i , ∂−− = u−i ∂

∂u+i .

2.2 Basic superfields

The basic object of N = (1,0) SYM theory is the analytic gauge N = (1,0) SYM connection
V++(ζ ) covariantizing the analyticity-preserving harmonic derivative D++:

∇
++ = D+++V++ , δV++ =−∇

++
Λ , Λ = Λ(ζ ) . (2.5)

The second harmonic (non-analytic) connection V−−(Z) covariantizing D−−,

∇
−− = D−−+V−− , δV−− =−∇

−−
Λ ,

3
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Harmonic superspaces for N = (1,1) SYM theory

is related to V++ by the harmonic flatness condition

[∇++,∇−−] = D0 ⇒ D++V−−−D−−V+++[V++,V−−] = 0

⇒ V−− =V−−(V++,u±) . (2.6)

The off-shell field content of N = (1,0) SYM theory is revealed in the Wess-Zumino gauge:

V++ = θ
+a

θ
+bAab +2(θ+)3

aλ
−a−3(θ+)4D−− . (2.7)

Here Aab is the gauge field, λ−a = λ aiu−i is the gaugino and D−− = D iku−i u−k , where D ik = Dki,
are the auxiliary fields.

The N = (1,0) SYM covariant derivatives are given by the expressions

∇
−
a = [∇−−,D+

a ] = D−a +A −
a , ∇ab =

1
2i
[D+

a ,∇
−
b ] = ∂ab +Aab ,

A −
a (V ) =−D+

a V−−, Aab(V ) =
i
2

D+
a D+

b V−−,

[∇++,∇−a ] = D+
a , [∇++,D+

a ] = [∇−−,∇−a ] = [∇±±,∇ab] = 0 . (2.8)

The covariant superfield strengths are defined as

[D+
a ,∇bc] =

i
2

εabcdW+d , [∇−a ,∇bc] =
i
2

εabcdW−d ,

W+a =−1
6

ε
abcdD+

b D+
c D+

d V−− , W−a := ∇
−−W+a ,

∇
++W+a = ∇

−−W−a = 0 , ∇
++W−a =W+a ,

D+
b W+a = δ

a
b F++ , F++ =

1
4

D+
a W+a = (D+)4V−− ,

∇
++F++ = 0 , D+

a F++ = 0 . (2.9)

The hypermultiplet is accommodated by the analytic superfield q+A(ζ ) ,(A = 1,2), with the
following component expansion:

q+A(ζ ) = qiA(x)u+i −θ
+a

ψ
A
a (x)+ An infinite tail of auxiliary fields . (2.10)

2.3 N = (1,0) superfield actions

The N = (1,0) SYM action was constructed by Zupnik [15]:

SSY M =
1
f 2

∞

∑
n=1

(−1)n+1

n
Tr
∫

d6xd8
θ du1 . . .dun

V++(z,u1) . . .V++(z,un)

(u+1 u+2 ) . . .(u
+
n u+1 )

,

δSSY M = 0 ⇒ F++ = 0 . (2.11)

Here, (u+1 u+2 )
−1, . . .(u+n u+1 )

−1 are harmonic distributions [17].
The hypermultiplet action, with q+A in adjoint of the gauge group, is written as

Sq =− 1
2 f 2 Tr

∫
dζ
−4q+A

∇
++q+A , ∇

++q+A = D++q+A +[V++,q+A ] ,

δSq = 0 ⇒ ∇
++q+A = 0 . (2.12)

4
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The N = (1,0) superfield form of the N = (1,1) SYM action ia a sum of the two superfield
actions given above:

S(V+q) = SSY M +Sq =
1
f 2

(∫
dZL SYM− 1

2
Tr
∫

dζ
−4q+A

∇
++q+A

)
,

δS(V+q) = 0 ⇒ F+++
1
2
[q+A,q+A ] = 0 , ∇

++q+A = 0 . (2.13)

It is invariant under the second hidden N = (0,1) supersymmetry:

δV++ = ε
+Aq+A , δq+A =−(D+)4(ε−A V−−) , ε

±
A = εaAθ

±a . (2.14)

These transformations have the correct closure with themselves and those of the manifest N =

(1,0) supersymmetry only on shell.

3. Higher-dimensional N = (1,0) and N = (1,1) invariants

3.1 Dimension d = 6

In the pure N = (1,0) SYM the d = 6 invariant is defined uniquely [18]:

S(6)SY M =
1

2g2 Tr
∫

dζ
−4du

(
F++

)2 ∼ Tr
∫

d6x[(∇MFML)
2 + . . .]. (3.1)

It vanishes on shell, when F++ = 0. Does its off-shell completion to an N = (1,1) invariant exist?
The answer is negative, the only possibility one can achieve is an expression whose N = (0,1)
variation vanishes on-shell. Using the results of [19], such an expression is defined uniquely, up to
a real parameter

L d=6 =
1

2g2 Tr
∫

dudζ
−4
(

F+++
1
2
[q+A,q+A ]

)(
F+++2β [q+A,q+A ]

)
. (3.2)

But it vanishes on the full N = (1,1) SYM mass shell by itself! We have thus shown that the
non-vanishing on-shell counterterms of the canonical dimension d = 6 are absent, and this proves
the one-loop finiteness of N = (1,1) SYM theory.

3.2 Dimension d = 8

All N = (1,0) superfield terms of the canonical dimension d = 8 in the pure N = (1,0)
SYM theory prove to vanish on the gauge fields mass shell, in accord with the old statement of ref.
[24]. Can adding the hypermultiplet terms change this negative conclusion? Our analysis showed
that there exist no N = (1,0) supersymmetric off-shell invariants of the dimension d = 8 which
would respect the on-shell N = (1,1) invariance.

Surprisingly, the d = 8 superfield expression which is non-vanishing on shell and respects the
on-shell N = (1,1) supersymmetry can be constructed by giving up the requirement of off-shell
N = (1,0) supersymmetry.

An example of such an invariant in N = (1,0) SYM theory is very simple

S̃(8)1 ∼ Tr
∫

dζ
−4

εabcdW+aW+bW+cW+d . (3.3)
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Indeed, D+
a W+b = δ b

a F++, which vanishes on shell, where F++ = 0. Thus, W+a is an analytic
superfield, when disregarding the terms proportional to the equations of motion, and the above
action respects N = (1,0) supersymmetry on shell. Also, a double-trace on-shell invariant exists:

S̃(8)2 ∼
∫

dζ
−4

εabcdTr(W+aW+b)Tr(W+cW+d) . (3.4)

Do these invariants admit N = (1,1) completions? Yes, they do!
By varying the pure N = (1,0) SYM action (3.3) by the transformations of the second hidden

N = (0,1) supersymmetry (2.14) and picking up the appropriate compensating hypermultiplet
terms, after rather cumbersome computations we find

L +4
(1,1) = Tr(S)

{1
4

εabcdW+aW+bW+cW+d +3iq+A
∇abq+A W+aW+b

−q+A
∇abq+A q+B

∇
abq+B −W+a[D+

a q−A ,q
+
B ]q

+Aq+B

− 1
2
[q+C,q+C ][q

−
A ,q

+
B ]q

+Aq+B
}
. (3.5)

Here, Tr(S) stands for the symmetrized trace. This Lagrangian density is analytic, D+
a L +4

(1,1) = 0,

on the full shell F+++ 1
2 [q

+A,q+A ] = 0, ∇++q+A = 0, and is N = (1,1) supersymmetric on shell.
Also, it is possible to extend the double-trace d = 8 invariant in a similar way.

Though the nontrivial on-shell d = 8 invariants exist, the perturbative expansion for the ampli-
tudes in the N = (1,1) SYM theory does not involve divergences at the two-loop level. The matter
is that these d = 8 invariants do not possess the full off-shell N = (1,0) supersymmetry which the
physically relevant counterterms should obey. Indeed, we have at hand the harmonic off-shell
N = (1,0) superfields. Given that, one can construct the N = (1,0) gauge-covariant supergraph
technique, such that all the amplitudes and the counterterms would enjoy off shell N = (1,0)
supersymmetry. Then, from the fact that such N = (1,0) off-shell d = 8 invariants cannot be
constructed, it follows that N = (1,1) SYM theory is finite to two-loops.

4. N = (1,1) on-shell harmonic superspace

Despite the fact that the d = 8 terms mentioned above cannot appear as counterterms in N =

(1,1) SYM theory, they can come out, e.g., as quantum corrections to the effective Wilsonian
action. For the pure N = (1,0) SYM theory this was recently observed in [21]. It would be
desirable to work out some simple and systematic way of constructing such higher-order on-shell
N = (1,1) invariants. This becomes possible in the framework of the on-shell harmonic N =

(1,1) superspace.
As the first step, extend the N = (1,0) superspace to the N = (1,1) one,

z = (xab,θ a
i ) ⇒ ẑ = (xab,θ a

i , θ̂
A
a ) . (4.1)

Then we define the covariant spinor derivatives,

∇
i
a =

∂

∂θ a
i
− iθ bi

∂ab +A i
a , ∇̂

aA =
∂

∂ θ̂Aa
− iθ̂ A

b ∂
ab + ˆA aA . (4.2)
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The constraints defining the N = (1,1) SYM theory can now be written as follows [25], [24]:

{∇(i
a ,∇

j)
b }= {∇̂

a(A, ∇̂bB)}= 0 , {∇i
a, ∇̂

bA}= δ
b
a φ

iA

⇒ ∇
(i
a φ

j)A = ∇̂
a(A

φ
B)i = 0 (By Bianchis) . (4.3)

As the next step, we define the N = (1,1) harmonic superspace with the double set of har-
monics [23]:

Z = (xab,θ a
i ,u
±
k ) ⇒ Ẑ = (xab,θ a

i , θ̂
A
b ,u

±
k ,u

±̂
A ) . (4.4)

Then we pass to the analytic basis and choose the “hatted” spinor derivatives short, ∇+̂a = D+̂a =
∂

∂θ
−̂
a
. The set of constraints in the ordinary N = (1,1) superspace amounts to the following set in

the N = (1,1) harmonic one

{∇+
a ,∇

+
b }= 0 , {D+̂a,D+̂b}= 0 , {∇+

a ,D
+̂b}= δ

b
a φ

++̂ ,

[∇+̂+̂,∇+
a ] = 0 , [∇̃++,∇+

a ] = 0 , [∇+̂+̂,Da+̂] = 0 , [∇̃++,Da+̂] = 0 ,

[∇̃++,∇+̂+̂] = 0 . (4.5)

Here

∇
+
a = D+

a +A +
a (Ẑ) , ∇̃

++ = D+++Ṽ++(ζ̂ ) , ∇
+̂+̂ = D+̂+̂+V +̂+̂(ζ̂ ) ,

ζ̂ = (xab
an ,θ

±a,θ +̂
c ,u±i ,u

±̂
A ) . (4.6)

5. Solving N = (1,1) SYM constraints through N = (1,0) superfields

The starting point of our analysis in [22] was to fix, using the Λ(ζ̂ ) gauge freedom, the WZ
gauge for the second harmonic connection V +̂+̂(ζ̂ ) as

V +̂+̂ = iθ +̂
a θ

+̂
b

ˆA ab + ε
abcd

θ
+̂
a θ

+̂
b θ

+̂
c ϕ

A
d u−̂A + ε

abcd
θ
+̂
a θ

+̂
b θ

+̂
c θ

+̂
d DABu−̂A u−̂B , (5.1)

where ˆA ab,ϕA
d and D (AB) are some N = (1,0) harmonic superfields, still arbitrary at this step.

Then the above constraints are reduced to some sets of harmonic equations which we have
explicitly solved. The crucial point was the requirement that the vector 6D connections in the
sectors of hatted and unhatted variables are identical to each other.

As the eventual result, we have obtained that the first harmonic connection V++ coincides
precisely with the previous N = (1,0) one, V++ = V++(ζ ), while the dependence of all other
geometric N = (1,1) objects on the “hatted” variables is strictly fixed

V +̂+̂ = iθ +̂
a θ

+̂
b A ab− 1

3
ε

abcd
θ
+̂
a θ

+̂
b θ

+̂
c D+

d q−−̂+
1
8

ε
abcd

θ
+̂
a θ

+̂
b θ

+̂
c θ

+̂
d [q+−̂,q−−̂]

φ
++̂ = q++̂−θ

+̂
a W+a− iθ +̂

a θ
+̂
b ∇

abq+−̂+
1
6

ε
abcd

θ
+̂
a θ

+̂
b θ

+̂
c [D+

d q−−̂,q+−̂]

+
1
24

ε
abcd

θ
+̂
a θ

+̂
b θ

+̂
c θ

+̂
d [q+−̂, [q+−̂,q−−̂]] . (5.2)
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Here, q+±̂ = q+A(ζ )u±̂A , q−±̂ = q−A(ζ )u±̂A and W+a,q±A are just the N = (1,0) superfields ex-
plored previously. In the course of solving the constraints, there appeared the analyticity conditions
for q+A, as well as the full set of the superfield equations of motion

∇
++q+A = 0 , F++ =

1
4

D+
a W+a =−1

2
[q+A,q+A ] . (5.3)

Also, the structure of the spinor covariant derivatives was fully fixed

∇
+
a = D+

a −θ
+̂
a q+−̂+θ

−̂
a φ

++̂ ,

∇
−
a = D−a −D+

a V−−−θ
+̂
a q−−̂+θ

−̂
a φ
−+̂ , φ

−+̂ = ∇
−−

φ
++̂ . (5.4)

The basic advantage of using the constrained N = (1,1) strengths φ±+̂ for constructing var-
ious invariants is their extremely simple transformation rules under the hidden N = (0,1) super-
symmetry

δφ
±+̂ =−ε

+̂
a

∂

∂θ
+̂
a

φ
±+̂−2iε−̂a θ

+̂
b ∂

ab
φ
±+̂− [Λ(comp),φ±+̂] , (5.5)

where Λ(comp) is some common composite gauge parameter which does not contribute under the
Tr symbol.

6. Invariants in N = (1,1) superspace

The previous single-trace d = 8 invariant Lagrangian (3.5) admits a simple rewriting in N =

(1,1) superspace

S(1,1) =
∫

dζ
−4L +4

(1,1) , L +4
(1,1) =−Tr

1
4

∫
dζ̂
−4dû(φ++̂)4, dζ̂

−4 ∼ (D−̂)4 (6.1)

δL +4
(1,1) =−2i∂ abTr

∫
dζ̂
−4dû

[
ε
−̂
a θ

+̂
b

1
4
(φ++̂)4

]
.

The double-trace d = 8 invariant is given by

L̂ +4
(1,1) =−

1
4

∫
dζ̂
−4dûTr(φ++̂)2 Tr(φ++̂)2. (6.2)

It can also be easily rewritten in terms of N = (1,0) superfields.
Now it is easy to construct the single- and double-trace d = 10 invariants responsible for the

candidate 3-loop counterterms

S(10)
1 = Tr

∫
dZdζ̂

−4dû(φ++̂)2(φ−+̂)2, φ
−+̂ = ∇

−−
φ
++̂ ,

S(10)
2 =−

∫
dZdζ̂

−4dûTr
(

φ
++̂

φ
−+̂
)

Tr
(

φ
++̂

φ
−+̂
)
. (6.3)

These are N = (1,1) extensions of the N = (1,0) invariants ∼ εabcdTr
(
W+aW−bW+cW−d

)
and

∼ εabcd Tr(W+aW−b)Tr(W+cW−d).
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It is notable that the single-trace d = 10 invariant admits a representation as an integral over
the full N = (1,1) superspace

S(10)
1 ∼ Tr

∫
dZdẐdû φ

++̂
φ
−−̂ , φ

−−̂ = ∇
−̂−̂

φ
−+̂ , (6.4)

with dẐ ∼ (D−̂)4(D+̂)4 .
On the other hand, the double-trace d = 10 invariant cannot be written as the full integral and

so looks as being UV protected.

This could explain why in the perturbative calculations of the amplitudes in the N = (1,1)
SYM single-trace 3-loop divergence is seen, while no double-trace structures at the same order
were observed [7], [8], [9]. However, this does not seem to be like the standard non-renormalization
theorems because the quantum calculation of N = (1,0) supergraphs should give some invariants
in the off-shell N = (1,0) superspace, not in the on-shell N = (1,1) superspace. So the above
property seems not enough to explain the absence of the double-trace divergences and some addi-
tional piece of reasoning is needed. One possibility is to generalize, to the 6D harmonic superspace
approach, the so called algebraic renormalization method [26] the applications of which to SYM
theories have been already initiated in [10].

Now there exist new methods in the N = (1,1),6D SYM perturbative calculations based on
the notion of the so called on-shell harmonic momentum superspace [27] (see also a recent work
[28] and refs. therein). It also involves two sets of harmonic coordinates. Perhaps it is closely
related to the x-space harmonic N = (1,1) superspace approach outlined above and would help to
prove that all divergent quantum corrections to N = (1,1) SYM action arise just as integrals over
the whole N = (1,1) harmonic superspace.

7. Summary and outlook

Basically following refs. [15], [18], [19] and a recent paper [22], the off-shell N = (1,0)
and on-shell N = (1,1) harmonic superfield approaches were sketched and shown to provide the
efficient tools of constructing higher-dimensional invariants in the N = (1,0) and N = (1,1)
SYM theories. The N = (1,1) SYM constraints were solved in terms of harmonic N = (1,0)
superfields. This allowed to explicitly construct the full set of the superfield dimensions d = 8 and
d = 10 invariants possessing N = (1,1) on-shell supersymmetry.

All possible d = 6 N = (1,1) invariants were demonstrated to be on-shell vanishing, thereby
proving the UV finiteness of N = (1,1) SYM at one loop.

The off-shell d = 8 invariants which would be non-vanishing on shell, are absent. The on-shell
non-vanishing invariants (with both N = (1,0) and N = (0,1) supersymmetries being on-shell)
are given by integrals over the analytic N = (1,0) subspace. Assuming that the N = (1,0)
supergraphs yield integrals over the full N = (1,0) harmonic superspace, this means the absence
of two-loop counterterms as well.

Two d = 10 invariants were explicitly constructed as integrals over the whole N = (1,0) har-
monic superspace. The single-trace invariant can be rewritten as an integral over the N = (1,1)
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superspace, while the double-trace one cannot. This property combined with an additional reason-
ing (e.g., based on the algebraic renormalization approach [26]) could explain why the double-trace
invariant is UV protected.

Some further lines of development:

(a). To construct the next d ≥ 12 invariants in the N = (1,1) SYM theory with the help of the
on-shell N = (1,1) harmonic superspace techniques.

(b). To apply the same method for constructing the Born-Infeld action with the manifest off-shell
N = (1,0) and hidden on-shell N = (0,1) supersymmetries. To check the hypothesis that such
an action coincides with the full quantum effective action of the N = (1,1) SYM theory.

(c). To develop an analogous on-shell harmonic N = 4,4D superspace approach to the N = 4,4D
SYM theory in the N = 2 superfield formulation (by solving the N = 4 SYM constraints in terms
of N = 2 superfields) and apply it to the problem of constructing the N = 4 SYM effective action.
The direct on-shell N = 2 superfield approach was applied for this purpose in [29], [30], [31].

(d). Applications in supergravity? It is worth noting that the absence of the double-trace divergent
structures in the 3-loop amplitude in N = (1,1) SYM theory is similar to the absence of analogous
3-loop and 4-loop divergences for the four-graviton amplitudes in N = 4,4D and N = 5,4D
supergravities, respectively [32], [33], [34], [35]. So all these UV divergence cancelations could
find a common explanation within the harmonic superspace approach supplemented with some
extra algebraic arguments1.
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