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1. Introduction

In the matrix model formulations of the string theory and M-theory [1, 2], configurations of
fundamental objects such as strings and membranes are described in terms of some Hermitian
matrices. In order to gain a deeper understanding of such formulations, one would need to clarify
a relation between the matrix configurations and the usual differential geometric description of
strings and membranes.

In particular, the case in which strings or membranes are embedded in the flat target space
is relevant to the matrix model formulations. The matrix geometry for an embedded space in the
flat space RD can be defined in terms of D Hermitian matrices X µ (µ = 1,2, · · · ,D), which can be
regarded as quantized form of the embedding function of objects in string theory such as strings
or D-branes. For the matrices with a fixed size N, one can associate a commutative space M for
the given matrices by using the method proposed in [3] (see also [4, 5]). Here, M is defined by
a set of loci of zero eigenmodes of the matrix Dirac operator, D(y) = γµ ⊗ (X µ − yµ), where yµ

are real parameters. In the string theory, if X µ represent a certain configuration of bosons on N
coincident D0-branes, D(y) appears just as the Dirac operator in the low-energy effective action
of open strings connecting the D0-branes with another probe D0-brane at the position y. The zero
eigenmodes are just massless modes of open strings. Thus at y ∈ M , the probe brane feels the
presence of one of the other D0-branes. So the loci of zero eigenstates correspond to the shape of
a D-brane formed by the D0-branes.

In this paper, we consider a large-N family of X µ . Namely, we assume that {X (N)
µ |N ∈ I} is

given, where X (N)
µ (µ = 1, · · · ,D) are N×N Hermitian matrices and I is a fixed index set made of a

strictly increasing infinite sequence of natural numbers. In particular, we consider matrices which
satisfy

[X µ ,Xν ] =
i

CN
W µν(X)+O(1/C2

N), (1.1)

where, W µν(X) is a polynomial of X µ such that its degree and coefficients do not depend on N.
CN is a real N-dependent constant such that CN → ∞ as N → ∞. So the large-N limit in this setup
corresponds to the commutative limit. We also call it classical limit since this corresponds to the
classical limit in quantum mechanics, where X1 and X2 correspond to the canonical operators, p̂
and q̂.

In this paper, we explain how to define the classical (commutative) space and its tangent space
in terms of the given matrices. We also show that if the matrices X µ satisfy (1.1), the associated
classical space possesses a Poisson structure. We will find relations between the given matrix
configuration and the geometric objects, such as the Poisson structure and a projection operator
onto the tangent space. These results were firstly presented in the publication [6].

The condition (1.1) restricts possible configurations of the matrices. However, this condition
is satisfied by most known examples of fuzzy spaces, such as fuzzy sphere, fuzzy torus and fuzzy
CPn. The condition is also satisfied by the nontrivial one-parameter family of noncommutative
spaces found in [7]. Furthermore, for any matrices X µ satisfying (1.1), one can add a perturbation
given by polynomials of X µ as X µ → X µ + f µ(X). If the definitions of f µ(x) are independent
of N, the condition (1.1) is also satisfied by the perturbed configuration up to any order of the
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perturbation. Thus, our set up is also relevant to matrix models expanded around some background
configurations.

The motivation to consider the large-N sequence, not just a fixed matrix size, partially lies in
the matrix regularization [8]. The matrix regularization is a sort of approximation of functions on
a symplectic manifold M using the matrix algebra MN(C). The matrix regularization is defined
in terms of a sequence {TN} of linear maps TN : C(M ) → MN(C) such that the ring structure is
preserved and the Poisson bracket is mapped to the commutator of matrices in the large-N limit.
Namely, ||TN( f )TN(g)−TN( f g)|| → 0 and ||TN({ f ,g})− iN[TN( f ),TN(g)]|| → 0, where || · || is a
matrix norm. If we regard X µ as images of the embedding function under TN , a problem of finding
the commutative geometry from given matrices is just the inverse problem of the construction of
matrix regularization. Understanding the inverse problem will shed light on the construction of the
matrix regularization.

This paper is organized as follows. In section 2 and 3, we define the classical space and its
tangent space in terms of the given matrices, respectively. In section 4, we show that the classical
space possesses a Poisson structure if (1.1) is satisfied. In section 5, we consider some examples
for this construction. For fuzzy sphere and fuzzy torus, we show explicit forms of the geometric
objects defined in the previous sections. Section 6 is devoted to a summary.

2. Classical space

In this section, we consider the classical limit of matrix geometry and define the classical space
M in terms of the given matrices. We adopt the method proposed in [6].

We first define an N ×N Hermitian matrix, which is called Hamiltonian, by

H(y) =
1
2
(X µ − yµ1)2. (2.1)

where yµ(µ = 1,2, ...,D) are real parameters. We introduce the eigenstates of the Hamiltonian as

H(y)|n,y⟩= En(y)|n,y⟩, (n = 0, · · · ,N −1) (2.2)

where we assume Ei ≤ Ei+1 for any i and the states are normalized as ⟨n,y|m,y⟩= δmn. Then, we
define the classical spaces as loci in RD of zeros of the ground state energy E0(y) of the Hamiltonian
in the commutative limit N → ∞. Namely, we write

M = {y ∈ RD| f (y) = 0}, (2.3)

where f (y) is the large-N limit of the ground state energy,

f (y) = lim
N→∞

E0(y). (2.4)

This definition allows an intuitive interpretation. The ground state energy can be written as

E0(y) =
1
2
(∆X µ)2 +

1
2
(⟨X µ⟩− yµ)2, (2.5)

where ∆X µ and ⟨X µ⟩ are the standard deviation and expectation value of X µ with respect to the
ground state, respectively. When the ground state energy goes to zero, both ∆X µ and ⟨X µ⟩− yµ
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go to zero. Thus, if the ground state energy vanishes, there exists a wave function such that its
wave packet shrinks to the point y. Conversely, suppose that there exists a wave packet such that
both of the standard deviation and the expectation value of X µ minus yµ are vanishing for the
corresponding state. Then, the expectation value of the Hamiltonian for that state is also vanishing.
Since the ground state energy is the smallest expectation value among all possible states, it is also
vanishing. Therefore, (2.3) is the space on which there exist shrinking wave packets, which can
naturally be identified with points in the classical limit. Those wave functions are analogues of the
coherent states in quantum mechanics1.

Note that in principle the function f (y) can be computed from the given matrices. Thus,
the definition (2.3) provides a practical way of finding the classical space form the given matrix
configurations.

However, for a general (random) sequence of matrices, the classical space (2.3) is the most
likely to be an empty set. A necessary condition to have a non-empty set is that the matrices
X µ become commuting with each other in the large-N limit. This is because the ground state
energy E0(y) is bounded from below by |⟨[X µ ,Xν ]⟩|/2 for arbitrary µ and ν (We can derive this
relation in exactly the same way as the standard derivation of the uncertainty inequality in quantum
mechanics.). Since we consider (1.1) in this paper, this necessary condition is always satisfied.

The relation (1.1) also allows us to relate the definition of the classical space with that in [3].
In [3], two-dimensional surfaces embedded in R3 are considered (See also [12] for applications to
various configurations of surfaces and [13] for higher dimensional extensions.). Here, the classical
space is defined for any fixed N as the loci of zero eigenmodes of the Dirac operator D(y) =
σi ⊗ (X i − yi), where σi are the Pauli matrices. Note that D2(y) is equal to our Hamiltonian plus
terms proportional to commutators [X µ ,Xν ]. Under the condition (1.1), the commutators become
negligible in the large-N limit. Therefore, in the large-N limit, the classical space defined by the
Hamiltonian is the same as the space defined by the Dirac operator.

In this paper, we assume that the classical space is a smooth manifold, Precisely speaking, we
assume that M is a non-empty connected subset of RD and there exists a neighbourhood of M on
which the function f (y) is smooth. As we will see in the following, the latter condition is required
for M to be a smooth manifold and to have a well defined tangent space.

3. Tangent space

In order to consider differential geometric objects on M , we then define the tangent space of
M using the given matrices. For each y ∈ M , let us consider an arbitrary D-dimensional vector
Bµ(y). There should be a projection operator, which projects Bµ onto the tangent components
along M . As we will show below, the projection operator is given by [6]

Pµ
ν(y) = δ µ

ν −∂ µ∂ν f (y). (3.1)

Here and thereafter, we raise and lower the indices µ,ν by the Kronecker delta, which is just the
flat metric on the target space. So we just have ∂ µ = ∂µ . In terms of the projection operator, the

1See [9–11] for applications of coherent states in describing matrix geometries.
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tangent vectors are defined as those satisfying

Pµ
ν(y)Bν(y) = Bµ(y), (3.2)

for y ∈ M .
The projection operator is positive definite on the tangent vectors and it gives a metric on M .

This corresponds to the induced metric of the embedding M → RD.
We can also relate the projection Pµ

ν to the given matrices by using the perturbation theory of
quantum mechanics. For a small change of the variables, yµ → yµ + εµ , the Hamiltonian varies by
ε · (y−X)+ 1

2 ε2. The perturbative corrections of the ground state energy is written in terms of the
variation of the Hamiltonian through formulas in perturbation theory. This relates derivatives of
the ground state energy with X µ . These derivatives in turn give derivatives of f (y) in the large-N
limit, which are related to Pµ

ν by (3.1). Thus, this relation connects Pµ
ν to the given matrices.

More specifically, Pµ
ν is explicitly written as

Pµ
ν(y) = 2 lim

N→∞ ∑
n̸=0

Re
⟨0,y|X µ |n,y⟩⟨n,y|Xν |0,y⟩

En(y)−E0(y)
. (3.3)

This expression as well as (3.1) provides a practical way of computing {Pµ
ν} from the given ma-

trices. Here, in order to write down (3.3), we have assumed that the ground state is non-degenerate
on M .

Below, we prove the projectivity of {Pµ
ν}. We first derive some useful equations. For any

normalized vector |ψ⟩, we have

lim
N→∞

⟨ψ|yµ −X µ |0,y⟩= 0 (3.4)

for y ∈ M . This follows from the Cauchy-Schwarz inequality and the fact that limN→∞ E0(y) = 0
for y ∈ M . This relation can be generalized to

lim
N→∞

⟨ψ|h(y)−h(X)|0,y⟩= 0, (y ∈ M ) (3.5)

where h(y) is any polynomial with N-independent degree and coefficients. Here, we have assumed
that Xµ are norm-bounded in the large-N limit. This corresponds to the case where the classical
space is a compact subspace of RD.

Firstly, we write Pµ
ν(y) at y ∈ M as

Pµ
ν(y) = δ µ

ν − lim
N→∞

∂ν⟨0,y|yµ −X µ |0,y⟩. (3.6)

We note that ⟨0,y|yµ −X µ |0,y⟩ is vanishing for any y ∈ M in the large-N limit because of (3.4).
Then its derivatives along tangent directions are also vanishing. Thus, for any tangent vector εµ

∥ at
y ∈ M , we have

Pµ
ν(y)εν

∥ = εµ
∥ . (3.7)

This means that Pµ
ν is closed on tangent vectors and is equal to δ µ

ν .
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Secondly, we consider an arbitrary normal vector εµ
⊥ at y ∈ M . We will show that

Pµ
ν(y)ε⊥µεν

⊥ = 0. (3.8)

The equations (3.7) and (3.8) are equivalent to the projectivity of Pµ
ν(y). Note that the left-hand

side of (3.8) appears in a power series expansion of f (y+ ε⊥) in ε⊥. Indeed, it is expanded as

f (y+ ε⊥) =
1
2
(δ µ

ν −Pµ
ν(y))ε⊥µεν

⊥+ · · · , (3.9)

for y ∈ M . In the following, we evaluate f (y+ ε⊥) and show that it is given as

f (y+ ε⊥) =
1
2
|ε⊥|2 +O(|ε⊥|3). (3.10)

The equation (3.8) follows from (3.9) and (3.10). So below, we focus on a proof of (3.10).
In order to prove (3.10), we first prove

lim
N→∞

KN⟨0,y1|H(y)|0,y2⟩=
1
2
(yµ

2 − yµ)2δ (D)(y1 − y2), (y1,y2 ∈ M ) (3.11)

where KN is a real positive constant defined below. We can compute the object on the left-hand
side as

⟨0,y1|H(y)|0,y2⟩=
(

E0(y2)+
1
2
(yµ

2 − yµ)2
)
⟨0,y1|0,y2⟩+(yµ

2 − yµ)⟨0,y1|Xµ − y2µ |0,y2⟩.

(3.12)

Because of (3.4), the inner product ⟨0,y1|0,y2⟩ satisfies

lim
N→∞

(yµ
2 − yµ

1 )⟨0,y1|0,y2⟩= 0. (y1,y2 ∈ M ) (3.13)

This shows that the ground states at different points are orthogonal to each other in the large-N
limit. So they must satisfy

lim
N→∞

KN⟨0,y1|0,y2⟩= δ (D)(y1 − y2). (y1,y2 ∈ M ) (3.14)

Here, we introduced the constant KN as a proportionality constant. By applying (3.4) and (3.14) to
(3.12), we obtain (3.11).

Then, we prove (3.10). We note that the function f (y+ ε⊥) can be written as

f (y+ ε⊥) = lim
N→∞

min
|α⟩∈H

⟨α|H(y+ ε⊥)|α⟩, (3.15)

for y ∈ M , where |α⟩ shall be normalized as ⟨α|α⟩ = 1. We denote by Hc the Hilbert space
spanned by all the ground states in M :

Hc = span{|0,y′⟩|y′ ∈ M }. (3.16)

The total Hilbert space is then decomposed as

H = Hc ⊕H̃ . (3.17)
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By definition, H̃ is the subspace on which expectation values of Hamiltonian are always nonvan-
ishing. Any element |β ⟩ in Hc can be expanded as

|β ⟩=
√

KN

∫
dDy′β (y′)|0,y′⟩, (3.18)

where β (y′) is a function which is non-vanishing only when y′ ∈ M . A generic normalized vector
|α⟩ can be decomposed as

|α⟩= |β ⟩+ |α̃⟩, (3.19)

where |β ⟩ is given by (3.18) and |α̃⟩ ∈ H̃ . The normalization condition becomes

⟨β |β ⟩+ ⟨α̃|α̃⟩= 1. (3.20)

By substituting (3.19) into (3.15), we obtain

f (y+ ε⊥) = lim
N→∞

min
|β ⟩,|α̃⟩

[⟨β |H(y+ ε⊥)|β ⟩+ ⟨α̃|H(y+ ε⊥)|β ⟩

+ ⟨β |H(y+ ε⊥)|α̃⟩+ ⟨α̃|H(y+ ε⊥)|α̃⟩] , (3.21)

Notice that for any |β ⟩ and |α̃⟩, the second and the third terms are vanishing in the large-N limit
because of (3.5) and the orthogonality between |β ⟩ and |α̃⟩. Here, let us consider the case where
|ε⊥| is very small and put

⟨β |β ⟩= c|ε⊥|a, (3.22)

where a and c are non-negative constants. Then, the last term in (3.24) can be written as

(1− c|ε⊥|a)
⟨α̃|H(y+ ε⊥)|α̃⟩

⟨α̃|α̃⟩
. (3.23)

Note that the second factor is positive definite and is estimated as O(|ε⊥|0)2. Hence, (3.23) is
O(|ε⊥|0) except the case with a = 0 and c = 1, where (3.23) is vanishing. Similarly, by using
(3.11), the first term in (3.24) can be estimated as O(|ε⊥|a+2). Thus, we can see that the minimum
in (3.24) is saturated by a = 0 and c = 1. (3.24) is now reduced to

f (y+ ε⊥) = lim
N→∞

min
|β ⟩∈Hc

⟨β |H(y+ ε⊥)|β ⟩, (3.24)

where ⟨β |β ⟩= 1. By substituting (3.18) into (3.24) and using (3.11), we finally obtain

f (y+ ε⊥) =
1
2

∫
dDy′|β̂ (y′)|2(y′µ − yµ − εµ

⊥)
2. (3.25)

Here, β̂ (y′) is the large-N limit of the function which saturates the minimum in (3.24). It is van-
ishing on the outside of M and from the normalization condition, it satisfies

∫
dDy′|β̂ (y′)|2 = 1.

Obviously, the right-hand side of (3.25) is minimized when β̂ (y′) localizes at y. Thus, we finally
obtain (3.10).

2If this is proportional to a positive power of |ε⊥|, it contradicts when |ε⊥| → 0 with the fact that expectation values
of Hamiltonian in H̃ is always nonvanishing.
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4. Poisson structure

Let us consider a D×D real antisymmetric matrix defined as3

W µν(y) =−i lim
N→∞

CN⟨0,y|[X µ ,Xν ]|0,y⟩. (4.1)

As we will show below, for y ∈ M , (4.1) gives a Poisson tensor on M [6]. Namely, it is a tangent
bivector on M satisfying

Pµ
ν(y)W νρ(y) =W µρ(y), (y ∈ M ) (4.2)

and the Poisson bracket on M defined by

{ f ,g}=W µν(∂µ f )(∂νg) (4.3)

satisfies the Jacobi identity.
Firstly, we show that W µν(y) is a tangent bivector, namely, it satisfies (4.2). For this purpose,

we use the following relation:

⟨0,y|[X µ ,Xν ]|0,y⟩⟨0,y|Xν |n,y⟩ ∼ (En(y)−E0(y))⟨0,y|X µ |n,y⟩, (4.4)

where ∼ stands for an equality for the leading-order terms in the large-N limit. The relation (4.4)
is proved as follows. By using (1.1) and (3.4), we obtain

⟨0,y|[X µ ,Xν ]|0,y⟩⟨0,y|Xν |n,y⟩ ∼
1
2
⟨0,y|{Xν − yν , [X µ ,Xν − yν ]}|n,y⟩. (4.5)

Then, note that {Xν − yν , [X µ ,Xν − yν ]} = 2[X µ ,H(y)]. By substituting this into (4.5) we obtain
(4.4). Now, let us compute

Pµ
ρ(y)W ρν(y) = lim

N→∞

[
2CNIm

{
∑
n̸=0

⟨0,y|X µ |n,y⟩⟨n,y|Xρ |0,y⟩
En(y)−E0(y)

⟨0,y|[Xρ ,Xν ]|0,y⟩

}]
. (4.6)

By using (4.4) and the completeness relation ∑N−1
n=0 |n,y⟩⟨n,y|= 1, we can calculate as

Pµ
ρ(y)W ρν(y) = lim

N→∞
[2CNIm{⟨0,y|X µXν |0,y⟩−⟨0,y|X µ |0,y⟩⟨0,y|Xν |0,y⟩}] . (4.7)

Note that the second term is zero since X µ are Hermitian and the first term is equal to W µν(y).
Thus, we obtain (4.2).

Secondly, we prove that the bracket defined in (4.3) satisfies the Jacobi identity. The Jacobi
identity is equivalent to

W µν(y)∂µW ρσ (y)+W µρ(y)∂µW σν(y)+W µσ (y)∂µW νρ(y) = 0, (4.8)

for y ∈ M . Let us consider an arbitrary polynomial Φ(x) with D variables xµ , where the definition
of the polynomial is N-independent. Because of (3.5), we have a relation

Φ(y) = lim
N→∞

⟨0,y|Φ(X)|0,y⟩. (4.9)

3Note that we use the same notation for this matrix and the polynomial which appears in the right-hand side of (1.1).
This is because the matrix (4.1) is indeed obtained by replacing X µ with yµ in the polynomial (1.1) (See (3.5)).
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Then, as we will show below, the following relation holds:

lim
N→∞

(−iCN)⟨0,y|[X µ ,Φ(X)]|0,y⟩=W µν(y)∂νΦ(y). (4.10)

If we put Φ(X) = W µν(X) = −iCN [X µ ,Xν ]+O(1/CN) in the above equation, (4.8) immediately
follows from the Jacobi identity of the matrix commutators. So below, we will try to prove the
relation (4.10).

The right-hand side of (4.10) is the large-N limit of

−iCN⟨0,y|[X µ ,Xν ]|0,y⟩∂ν⟨0,y|Φ(X)|0,y⟩. (4.11)

The derivative of |0,y⟩ is obtained from the formula in the perturbation theory as

∂µ |0,y⟩= ∑
n̸=0

|n,y⟩⟨n,y|X µ |0,y⟩
En(y)−E0(y)

+ iAµ(y)|0,y⟩, (4.12)

where Aµ(y) is a real number and correspond to the Berry connection of the ground states. By
substituting this and using (4.4), we find that the large-N limit of (4.11) is also equal to the left-
hand side of (4.10). Thus, we obtain (4.10).

5. Examples

5.1 Fuzzy sphere

The fuzzy sphere is defined by

X µ =
2√

N2 −1
Lµ , (5.1)

where Lµ are the N-dimensional irreducible representation matrices of the SU(2) generators. The
normalization factor is chosen so that (X µ)2 = 1. The matrices satisfy the commutation relation,

[X µ ,Xν ] =
2i√

N2 −1
εµνρXρ . (5.2)

The Hamiltonian is given by

H(y) =
1
2
(1+ |y|2)− 2√

N2 −1
yµLµ , (5.3)

where |y|=
√

yµyµ . As shown in appendix A, in this case, the function f (y) in (2.4) is given by

f (y) =
1
2
(1−|y|)2. (5.4)

So indeed the classical space (2.3) is S2 with the unit radius.
From (3.1) and (4.1), we can easily derive explicit forms of the projection matrix and Poisson

tensor. They are given as follows.

Pµ
ν(y) =

1
|y|

(
δ µ

ν − yµyν

|y|2

)
,

W µν(y) = 2εµνρ yρ

|y|
, (5.5)

From these expressions, we can see that for y ∈ M (i.e. for |y| = 1), they satisfy the required
properties such as the projectivity for Pµ

ν and (4.2) and (4.8) for W µν .
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5.2 Fuzzy torus

Next, we consider the fuzzy torus, which is defined by the two unitary matrices U and V
satisfying the algebra

VU = eiθUV, (5.6)

where θ = 2π/N. The matrices U and V are explicitly given by the clock and shift matrices as

Umn = δmneinθ ,

Vmn = δm+1n, (5.7)

where m,n = 0,1, · · · ,N − 1 and δmn is the cyclic version of the Kronecker delta which satisfies
δNn ≡ δ0n. We introduce four Hermitian matrices X µ (µ = 1,2,3,4) as the real and imaginary parts
of U and V as

U = X1 + iX2, V = X3 + iX4. (5.8)

Then, the fuzzy torus can be regarded as the non-commutative Clifford torus embedded in the four
dimensional flat space. Note that X1 and X2 commute with each other and satisfy (X1)2 +(X2)2 =

1N×N because of the unitarity condition of U , and so do X3 and X4.
The Hamiltonian (2.1) is given by

H(y) =
1
2
(U − z)(U† − z̄)+

1
2
(V −w)(V † − w̄), (5.9)

where we introduced complex variables, z = y1 + iy2 and w = y3 + iy4. As shown in appendix B,
the function f (y) in (2.4) is given in this case by

f (y) =
1
2
(1−|z|)2 +

1
2
(1−|w|)2. (5.10)

Hence, the classical space M is the Clifford torus given by |z|= |w|= 1.
We can also obtain the projection operator from (3.1). We find

Pa
b(y) =

1
|z|

(
δ a

b − yayb

|z|2

)
, Pa

α(y) = 0, Pα
β (y) =

1
|w|

(
δ α

β −
yαyβ

|w|2

)
, (5.11)

where a,b = 1,2 and α,β ,= 3,4. We can see that Pµ
ν is indeed a projection operator for y ∈ M

and gives the standard induced metric of the Clifford torus.
In order to compute the Poisson tensor, we rewrite the algebra (5.6) using X µ as

[X1 ± iX2,X3 ± iX4]∼ iθ(X1 ± iX2)(X3 ± iX4),

[X1 ± iX2,X3 ∓ iX4]∼−iθ(X1 ± iX2)(X3 ∓ iX4), (5.12)

where we have neglected higher order terms in θ . By putting CN = 1/θ in (1.1), we obtain the
Poisson tensor on the Clifford torus as

W µν(y) =


0 0 y2y4 −y2y3

0 0 −y1y4 y1y3

−y2y4 y1y4 0 0
y2y3 −y1y3 0 0

 . (5.13)
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6. Summary

In this paper, we considered the classical limit of matrix geometry described by a sequence
of D Hermitian matrices, {(X (N)

1 , · · · ,X (N)
D )|N ∈ I}. We explained a prescription [6] to define the

classical geometry for the matrix geometry. The classical space M is defined in terms of the Hamil-
tonian (2.1) and is given by the loci of zeros of the ground state energy in the large-N limit as (2.3),
while the tangent space of M is defined in terms of the projection matrix (3.1). We focused on the
case where the matrices satisfy (1.1). We showed that in this case the classical space possesses a
Poisson structure4. Under the assumption that the ground state energy is nondegenerate near M ,
we found formulas (3.3) and (4.1) which relate the geometric objects to the matrix configurations.
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A. Classical geometry of fuzzy sphere

In this appendix, we show that the function f (y) for the fuzzy sphere is given by (5.4). Firstly,
we consider a rotation matrix, which rotates a vector vi = (0,0,1) in R3 to a general point xi on S2

with a unit radius.

xi = (Λ−1(x))i
j(x)v j. (A.1)

Here, by using the standard poler coordinates (θ ,ϕ), xi shall be expressed as

x1 = sinθ cosϕ , x2 = sinθ sinϕ , x3 = cosθ . (A.2)

Note that the definition of Λ has an ambiguity for the left action of SO(2) rotations. We fix this
ambiguity by setting

Λ(x) =

 cosϕ −sinϕ 0
sinϕ cosϕ 0

0 0 1


 cosθ cosϕ cosθ sinϕ −sinθ

−sinϕ cosϕ 0
sinθ cosϕ sinθ sinϕ cosθ

 . (A.3)

This definition is chosen in such a way that it becomes consistent with the definition of the Bloch
coherent state in literatures introduced below. The matrix Λ can also be written as the three dimen-
sional representation matrix of the group element

ĝ = e−iL̂3ϕ eiL̂2θ eiL̂3ϕ , (A.4)

where L̂i are the generators of the Lie algebra of SU(2) satisfying [L̂i, L̂ j] = iεi jkL̂k.
Second, let us consider an N dimensional irreducible representation matrices Li = DN [L̂i] of

the SU(2) generators. Note that any representation matrices of SU(2) generators are invariant

4In this paper, we only considered the Poisson structure. However, recently, we also found that the classical space
for the present setup possesses not only the Poisson structure but also a Kähler structure [14].
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tensors. This means that for any SO(3) rotation of the vector index of the representation matrices,
there exists a unitary similarity transformation which cancels the SO(3) rotation. Hence, for the
rotation made by Λ(x), there exists a N ×N unitary matrix U(x) such that

U†(x)LiU(x) = L j(Λ(x)) j
i. (A.5)

If we write Λ(x) = D3[ĝ], U(x) can be written as U(x) = DN [ĝ].
Now, let us diagonalize the Hamiltonian (5.3) for the fuzzy sphere. We write yi = |y|xi, where

xi is the coordinates on the unit sphere given by (A.2). Substituting (A.1) into this expression, we
obtain yi = |y|(Λ−1)i

jv j. Then by using this and (A.5), we can write the Hamiltonian (5.3) as

H(y) =U(x)
[

1
2
(1+ |y|2)− 2|y|√

N2 −1
L3

]
U†(x). (A.6)

Thus, the Hamiltonian is diagonalized by

|n,y⟩=U(x)|JJ−n⟩. (A.7)

Here, we have adopted the standard notation |Jm⟩(m = −J,−J +1, · · · ,J) for the basis vectors of
the N-dimensional representation space, where J is the spin of the representation given by J =

(N −1)/2. The basis satisfies

L3|Jm⟩= m|Jm⟩, L±|Jm⟩=
√

(J∓m)(J±m+1)|Jm±1⟩, (A.8)

where L± = L1 ±L2.
In particular, in (A.7), the ground state |0,y⟩=U(x)|JJ⟩ is what is known as the Bloch coherent

states. It satisfies

H(y)|0,y⟩=
[

1
2
(1+ |y|2)− 2J|y|√

N2 −1

]
|0,y⟩ (A.9)

This leads to (5.4).

B. Classical geometry of fuzzy torus

In this appendix, we show that the function f (y) for the Hamiltonian (5.9) is given by (5.10).
First, we note the following inequalities,

E0(y) = min
|ψ⟩

⟨ψ|H(y)|ψ⟩

≥ 1
2

min
|ψ⟩

⟨ψ|(U − z)(U† − z̄)|ψ⟩+ 1
2

min
|ψ⟩

⟨ψ|(V −w)(V † − w̄)|ψ⟩

≥ 1
2
(1−|z|)2 +

1
2
(1−|w|)2. (B.1)

The last inequality follows from the fact that the spectrum of any unitary matrix is contained in the
unit circle on the complex plane. On the other hand, for any normalized state vector |α⟩, we have

E0(y)≤ ⟨α|H(y)|α⟩. (B.2)

12
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Hence, if there exists a normalized state vector |α⟩ which satisfies

lim
N→∞

⟨α|H(y)|α⟩= 1
2
(1−|z|)2 +

1
2
(1−|w|)2, (B.3)

the equation (5.10) immediately follows from (B.1) and (B.2). In the following, we construct such
a state that satisfies (B.3).

We introduce the basis used in equation (5.7),

U |m⟩= eiθ |m⟩, V |m⟩= |m+1⟩. (B.4)

For convenience, we extend the range of m to a set of all integers by imposing the periodicity
condition |m+N⟩= |m⟩. We then consider a state vector

|α⟩ := c̃
[N

2 ]

∑
m=−[N−1

2 ]

e−
a
2(

m
N − argz

2π )
2

e−i(argw)m|m⟩, (B.5)

where a is a constant of O(
√

N), c̃ is a normalization constant determined by ⟨α|α⟩ = 1 and [x]
stands for the floor function defined by [x] = max{m ∈ Z|m ≤ x}. In the large-N limit, we can
evaluate c̃ as

c̃−2 =
[N

2 ]

∑
m=−[N−1

2 ]

e−a(m
N − argz

2π )
2

∼ N
∫ ∞

−∞
dxe−a(x− argz

2π )
2

= N
√

π
a
. (B.6)

Here we approximated the discrete sum by the integral. By repeating almost same calculations, we
can obtain

lim
N→∞

⟨α|U |α⟩= eiargz, lim
N→∞

⟨α|V |α⟩= eiargw. (B.7)

These relations imply that |α⟩ satisfies (B.3). Thus, we have proved (5.10).
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