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1. Introduction

Classical cosmology, tested by a variety of precise astrophysical measurements, is built upon
Einstein’s theory of General Relativity and the Cosmological Principle. General Relativity is how-
ever a classical theory, hence its validity breaks down at very high energy scales. The Cosmolog-
ical Principle, namely the assumption of a continuous space-time characterised by homogeneity
and isotropy on large scales, is valid only once we consider late-eras of our universe, characterised
by energies far below the Planck scale. At very early times, very close to the Big Bang and the
so-called Planck era, quantum corrections can no longer be neglected and geometry may altogether
lose the meaning we are familiar with. To describe the physics near the Big Bang, a Quantum
Gravity theory and the associated appropriate space-time geometry is hence required.

The available Quantum Gravity proposals can be divided into two classes. On the one hand,
there is String Theory/M-theory, according which matter consists of one-dimensional objects,
strings, which can be either closed or open (without ends). Different string vibrations would repre-
sent different particles; splitting and joining of strings would then correspond to different particle
interactions. On the other hand, there are non-perturbative approaches to quantum gravity; some
examples are Loop Quantum Gravity, a Euclidean approach to quantum gravity like Causal Dy-
namical Triangulations, and Group Field Theory. The latter class of models adopts the hypothesis
that space is not infinitely divisible, instead it has a granular structure, hence it is made out of
quanta of space. In the former class of models, matter is the important ingredient; in the latter
one, matter is, so far, (rather artificially) added. These two classes of models can be considered as
following a top-down approach, whilst they both inspire cosmological models leading to several
observational consequences.

In the following, I will consider a bottom-up approach, in the sense that I will focus on a
proposal attempting to guess the small-scale structure of space-time near the Planck era, using our
knowledge of well-tested particle physics at the electroweak scale. More precisely, I will focus
on Noncommutative Spectral Geometry (NCSG). One may argue that at the Planck energy scale,
quantum gravity implies that space-time is a wildly noncommutative manifold. However, at an in-
termediate scale, one may assume that the algebra of coordinates is only a mildly noncommutative
algebra of matrix valued functions, which if appropriately chosen, may lead to the Standard Model
of particles physics coupled to gravity. It is important to note that according to the NCSG proposal,
to construct a quantum theory of gravity coupled to matter, the gravity-matter interaction is the
most important ingredient to determine the dynamics; this consideration is not the case for either
of the two classes of proposals mentioned previously.

I will first briefly introduce elements of NCSG and then discuss some of its phenomenological
consequences, focusing on its successes and some open questions [1, 2, 3].

2. NCSG in a nutshell

Noncommutative spectral geometry [4, 5, 6] postulates that the Standard Model (SM) of parti-
cle physics is a phenomenological model which dictates the space-time geometry in order to get the
SM action. In its simplest approach, one considers that at each point of a four-dimensional Rieman-
nian manifold there is an internal zero-dimensionality discrete space. Such a Kaluza-Klein type
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mildly noncommutative manifold, given by the product .# x .%# of a compact four-dimensional
smooth Riemannian spin manifold .# and a discrete noncommutative zero-dimensionality space
Z , is called an almost commutative manifold.

The main idea we will follow is to characterise Riemannian manifolds by spectral data, and
then apply the same procedure in the case of almost commutative manifolds. Hence, let us first
consider a compact four-dimensional Riemannian spin manifold .#. The set C*(.#) of smooth
infinitely differentiable functions forms an algebra </ = C*(.#') under point-like multiplication.
Then consider the Hilbert space .# = L?(.#,S) of square-integrable spinors S on the spin man-
ifold .#. Note that the algebra .7 = C*(.#) acts on the Hilbert space & = L*(.#,S) as mul-
tiplication operators. Finally, consider the Dirac operator 4 = —iy*V>, acting as a first order
differential operator on the spinors S. The canonical triple (C*(.#),L*(.#,S),%) encodes the
space-time structure. In addition, we introduce the 75 operator, which is just a Z,-grading, with
}/52 = 1,% = 75. It plays the role of a chirality operator, in the sense that it decomposes .7 into
a positive and negative eigen-space: L*(.#,S) = L*(.#,S)* @ L*(.#,S)~. Let us also introduce
an antilinear isomorphism J 4, playing the role of a charge conjugation operator on spinors, with
Py==100F=Pu: Ja¥s =Y a-

In a similar way, the noncommutative space .#, which encodes the internal degrees of freedom
at each point in space-time .#, can be described by the real spectral triple (Z#, 7, P7). It
lead to a gauge theory on the spin manifold .#. Here (<7 is an involution of operators on the
finite-dimensional Hilbert space .7#7 of Euclidean fermions. The matrix algebra <7z contains all
information usually carried by the metric. The axioms of the spectral triples imply that the Dirac
operator of the internal space is the fermionic mass matrix. Hence, Z 4 is a 96 x 96 matrix in terms
of the 3 x 3 Yukawa mixing matrices and a real constant necessary to obtain neutrino mass terms.
Consider also a grading Yz, with Y& = +1 for left-handed and Y = —1 for right-handed fermions,

1
J/' - 48 .
I4g

The almost commutative manifold .# x .# is thus given by the spectral triple (&7, 7, 2), with

and a conjugation operator J z:

A =C (M) Ay =C(M, D7),
H =L MS)@ Hy = LHMSDH7) ,
2=+ P% .

The finite dimensional algebra <7, which is the main input, must be in agreement with noncommu-
ative geometry properties, while it must be chosen such that it can lead to the SM. The appropriate
choice is [7]

oAz = My(H) &M (C)

with M, (H) the algebra of quaternions and M;(C) the algebra of complex k x k matrices with k =
2a. The lowest allowed value of & in order to obtain 16 fermions in each of the three generations,
where the number of generations is an (external) physical input, is k = 4.

It is important to note that the choice of an almost commutative manifold has deep physical
implications. The spectral triple (<7, .7, 2,J,y) defining the almost commutative manifold .# x
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Z can be written as
(o, H,D,J,7) = (o, 70, P1,J1,) @ (9, 75, D2,]2,72) , 2.1
with
A =\ R, =005, D=211+1nQ% ,y=n®n,)J=L1&L, 22

where J2 = —1,[J,2] = 0,[J;,71] = 0 and {J, 7} = 0.

The algebra doubling is strongly related to dissipation, to the the gauge structure of the SM, whilst it
offers a way to generate the seeds of quantisation [8]. Moreover, the doubling of the algebra offers
a natural explanation for neutrino mixing, since by linking the algebra doubling to the deformed
Hopf algebra, one can build Bogogliubov transformations and argue the emergence of neutrino
mixing [9].

In order to extract physical consequences of the NCSG construction, one needs to obtain a
Lagrangian. To do so we will apply the spectral action principle, according which the bosonic part
of the action is of the form

Tr(f(Z4/A%))

where %, is the fluctuated Dirac operator, f is a cutoff function (a positive function that goes to
zero for large values of its argument) and A a cutoff scale, denoting the energy scale at which the
Lagrangian is valid. Hence, the bosonic part of the action sums up eigen-values of the fluctuated
Dirac operator, smaller than the cutoff energy scale. Since this action depends on the cutoff energy
scale and (mildly) on the cutoff function, we will call it the cutoff bosonic spectral action. One
then evaluates the trace with heat kernel techniques, and writes the bosonic cutoff spectral action
in terms of Seeley-de Witt coefficients. The asymptotic expansion of the trace thus reads

Tr(f(Z5/N?)) ~ 2fslao(Z3) + 2 /oNax (Z5) + f(0)as(Z3) + O(A?) (2.3)

in terms of only three of the momenta of the cutoff function f, given by

ﬁ:f}wfwhﬁ:f}wwmﬁ:ﬂm. 2.4)
0 0

related respectively to the cosmological constant, the gravitational constant and the coupling con-
stants at unification. Performing a straightforward but long calculation, one finally writes the cutoff
bosonic spectral action, modulo gravitational terms, as

$p= AL [1op it B [apor vaate— 22 [arior vaats

Jo 2 i i 2 5, 4 Jo f 4 4 -2
3% [ (6LGH + R+ SeiBuBt ) Vad'v+ s [ b9l Vad'x+ O(A7), @)

with a, b, c,d, e constants depending on the Yukawa parameters. Adding to the above bosonic action

SA, the fermionic part
(1/2)(JP, 24¥) ; Y e ", (2.6)

one obtains the full SM Lagrangian. The cutoff scale is set at the Grand Unified Theories (GUT)
scale, since among the relations between the coefficients in the spectral action one obtains the
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relation g% = g% =(5/ 3)g% for the three couplings, valid in the context of several GUTs groups.
Following a renormalisation group analysis [10] one then obtains predictions for the SM, which
turn out to be in agreement with the most current experimental data. In particular, one obtains
a Higgs doublet with a negative mass term and a positive quartic term, which implies that the
electroweak symmetry is spontaneously broken. Note, that current developments [11, 12, 13, 14]
of the noncommutative spectral geometry proposal are in agreement with the experimentally found
Higgs mass.

3. The gravitational sector

Noncommutative spectral geometry leads to an extended gravitational theory, in the sense that
the gravitational sector includes additional terms beyond the ones of the Einstein-Hilbert action.
The gravitational part of the cutoff bosonic spectral action, in Euclidean signature, reads [10]

1 1 o1
Sgr - / (2—,(‘3R + (XOCuvp(yCuvPG + ’y() + TOR*R* + _Gl G'uVl + - ’L(LXVF[J,VO!

4 K 4
2B Byt LD B SR MBI VR d G
where
2 127 3

= 96mA—foc T P T TTom2

1 f() 1 lf()
= — (48/4A% — HA%c+ =2 =
)] 7[2 ( 8f4 f2 c+ 4 D) , 10 6077:2 )

2 2 fr ¢ 1
Uy fO a ) ‘SO 12°

H=(\/afo/m)¢ (3.2)

with H a rescaling of the Higgs field ¢ to normalize the kinetic energy, and a, b, c,0,¢ parameters
related to the particle physics model. Let me remark that this action has to be seen a la Wilson.
We have hence obtained the Einstein-Hilbert action with a cosmological term, a conformal Weyl
term and a conformal coupling of the Higgs field to the background geometry. Note that the fourth
term is a topological term related to the Euler characteristic of the space-time manifold; thus a
nondynamical term. In addition to the gravitational sector written above, one obtains also the SM
action.

To use the gravitational part of the bosonic spectral action, one must assume that it is also valid
for a Lorentzian manifold. The next question one has to address is whether the gravitational sector
of the bosonic spectral action, leading to a fourth-order gravitational theory, is not plagued by linear
instability. Considering the spectral action within a four-dimensional manifold with torsion, one
can show that in the vacuum case, the equations of motion reduce to the second order Einstein’s
equations, implying linear stability [15]. To address the nonvacuum case, one can then consider
the spectral action of an almost commutative geometry and show that the Hamiltonian is bounded
from below, securing also in this case, which is of interest to us here, the linear stability of the
theory [15].
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The equations of motion that one obtains from gravitational part of the asymptotic expression
of the cutoff bosonic spectral action are [16]

1 1 N
RMV _ EguvRJr E&C [Zci;’:KJrCuAvKR“ — ggccTnﬁllavner 7 3.3)

with |
BZ = _4K02(X0 and SCC = [1 — 2K§§0H2]_1 , (34)

where B2 (or equivalently, &g, or fy) is related to the coupling constants at unification, and &,
encodes the conformal coupling between the Higgs field and the Ricci scalar. Neglecting the non-
minimal coupling (namely, setting 8. = 1) one can show that since the Weyl tensor vanishes for
a Friedmann-Lemaitre-Robertson-Walker space-time, then in such a case there are no corrections
to Einstein’s equations [16]. Any modifications at leading order will only arise for anisotropic and
inhomogeneous geometries [16].

As energies however increase, one may no longer set &, = 1, and the corresponding back-
ground equations are [16]

R~ ghR = [W] Tater (3:5)
where we have set B = 0, just for simplicity. Thus one observes that the nonminimal coupling
between the Higgs field and the Ricci scalar, leads to an effective gravitational constant, or equiva-
lently, or equivalently, to an enhancement of the self-interaction of the Higgs field.

Given that the model has no freedom to introduce extra scalar fields, one may wonder whether
the Higgs field, through its nonminimal coupling to the background geometry, could play the role
of the inflaton[17, 18]. To address this question one looks for a flat region of the Higgs potential.
Considering the renormalisation of the Higgs self-coupling up to two-loops, one finds that for each
value of the top quark mass, there is a value of the Higgs mass where the Higgs potential is locally
flattened [18]. However, the flat region is very narrow and to achieve a sufficiently long inflationary
era, the slow-roll must be very slow, leading to an amplitude of density perturbations incompatible
with Cosmic Microwave Background data (CMB) [18].

Finally, one can study the effects of NCSG in a perturbed background. Let us consider linear
perturbations g,y = Ty + Yuv around a Minkowski background 7,y. The linearised equation of

motion then reads [19]
matter »

1 B}
<1 — ED,,) Onh*Y = —2k>Thx (3.6)

where k2 = 87G and B2 =57 /(6K fy). Note that T1" . is taken to lowest order in y*V. To write

the above equation, we have defined the tensor

_ _ 1 B
hyv = Yuv — W o' (nuan - auav) Y, (3.7)

with / ]
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One can then impose constraints on 8 from astrophysical data. More precisely, one may restrict f3
(and therefore fj) by requiring that the energy lost to gravitational radiation by binary pulsar sys-
tems agrees with the (standard) General Relativity prediction within observational uncertainties.
Such consideration implied a (rather weak) limit, namely B > 7.55 x 10~*m~! [20], which how-
ever can be improved if in the future data from rapidly orbiting nearby binaries become available.

Considering data from the Gravity Probe B and the LARES experiments, the limit on f3 has
been improved, namely B > 7.1 x 10m~" and B > 1.2 x 10~%m~!, respectively [21, 22].

The tighter constraint on the parameter  can be set using torsion balance experiments. It
turns out that the modifications to the Newton potentials induced by the spectral action are similar
to those due to a fifth-force potential. One thus finds 8 > 10*m~!, which is by far the strongest
limit [21].

4. The zeta function regularisation

The cutoff bosonic spectral action, defined and explored previously, has certainly several mer-
its. It leads to a description of geometry in terms of spectral properties of operators and can provide
an explanation of the most successful particle physics we have, namely the Standard Model. Since
not all gauge groups can fit into the framework, one may conclude that absence of large groups
(like SO(10)) prevents proton decay; hence an encouraging outcome of the proposal. However,
the meaning of the cutoff scale remains unclear, the dimensional parameters appear with incor-
rect values (a hierarchy problem), and there is also a (mild) dependence on the cutoff function.
Moreover, and maybe this is the most important concern, the asymptotic expansion, valid only in
the weak-field approximation, invalidates the theory in the ultraviolet regime, when one expects
noncommutative geometry to play an important role.

To address such issues, the zeta bosonic spectral action

Se = g%T@*ZS =((0,2%), 4.1

has been proposed [23]. It is just the a4 heat kernel coefficient associated with the Laplace type
operator Z°:

S¢=as[7°] = / d*x/gL with L(x) = ay(7* %), 4.2)
and leads to the Lagrangian density
L(x) = aiM* + 0oM*R + 0aM>H? + 0By B + as WA, W' @ + a6 G, MV

R
+or H (—V2 — €> H + ogH* + 9CpyypoC*'P% + a1oR*R* (4.3)

where By, Wy and Gy, are respectively the field strength tensors of the U(1), SU(2) and SU(3)
gauge fields; the coefficients o, .., oo are dimensionless constants determined by the Dirac op-
erator, the term R*R* is the Gauss-Bonnet density, and C denotes the Weyl tensor. Note that the
oy, 0n, 03 coefficients cannot be taken by the spectral action, i.e. the lower-dimensional operators
must be normalised by hand.

It is worth noting that the dimensionful quantity M corresponding to the Majorana mass of the
right-handed neutrino in the Dirac operator, is considered here as being constant. Since for M = 0
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there are no dimensionful constants in the bare Lagrangian, one concludes that the cosmological
constant, the Higgs mass parameter and the gravitational constant would not arise from renormal-
isation. A nonzero element in the Dirac operator corresponding to a neutrino Majorana mass is
also essential in order to get the experimentally found Higgs mass. Such a term in the Dirac oper-
ator can be either ;o (x)y (with i a generation index, i = 1,2,3), or of the more general form
y(a;o(x) + M)y with a;,M; constants for right- and left-handed neutrinos in the three genera-
tions. In the former case, no dimension zero and two operators appear in the classical action; thus
one will have to achieve dynamical generation of the three scales upon quantisation. In the latter
case, one chose to use constant terms in order to introduce the M 4,M H 2,M 2R terms in the action,
and consequently get the respective counter terms via ultraviolet renormalisation.

Following the zeta spectral action, one has no higher (than 4) dimensional operators, hence
the theory is renormalisable and local. In addition, there are no issues with asymptotic expansion
and convergence. The zeta bosonic spectral action is purely spectral with no dependence on a
cutoff function. Moreover, while in the context of the zeta spectral action, the gravitational spectral
dimension is equal to 2, implying that the gravitational propagation decreases faster at infinity
due to the presence of fourth-derivatives, within the cutoff spectral action, the spectral dimension
vanishes for all spins [24].

5. Conclusions

Noncommutative spectral geometry on the one hand addresses conceptual issues of the SM,
while on the other hand it offers a geometrical framework to study physics at the quantum gravity
regime. In the noncommutative spectral geometry framework, gravity and the Standard Model
fields are put together into geometry and matter on a Kaluza-Klein noncommutative space. Then
making use of known experimental data at the well-tested electroweak scale, one tries to understand
the small-scale space-time structure. Applying the spectral action within an almost commutative
manifold, one gets gravity combined with Yang-Mills and Higgs. Hence, this approach offers a
purely geometric interpretation of the SM coupled to gravity, and in addition it offers a natural
framework to address early universe cosmology.

To address physical consequences of the spectral action one admits its validity in the Lorentzian
signature; an important issue that deserves further investigation. Within the context of the cutoff
bosonic spectral action, an important remaining open issue is the weak-field approximation, in the
sense that the expansion in reverse orders of the cutoff scale is only valid when fields and their
derivatives are smaller than the cutoff scale. In the context of the zeta spectral action, one may
have to find a dynamical generation of the three dimensionful fundamental constants, namely the
cosmological constant, the Higgs vacuum expectation value and the gravitational constant.

It remains an open question of whether inflation, if at all needed within a wildly nocnommu-
tative manifold, can be naturally incorporated. The known scalar fields, appearing in the NCSG
action, could provide through their nonminimal coupling to the background geometry an era of ac-
celerated expansion but fail to match the cosmic microwave background temperature anisotropies
data. Unfortunately, the successful R>-type inflation [25], favoured by the Planck CMB [26] data,
cannot be applied in the higher derivative gravitational theory obtained by noncommutative spec-
tral geometry. It is not clear yet whether one can accommodate a dilaton-type inflation [27] or
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use a scalar field, in a beyond the Standard Model scenario like the Pati-Salam model [28], as a
successful inflaton candidate.
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