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Power counting ans scaling for tensor models Thomas Krajewski

Despite decades of efforts, the construction of a quantum theory of gravity remains an open
question. There are a few promising approaches, including string theory, loop quantum gravity,
simplicial quantum gravity, ... Random tensors are higher dimensional generalisations of matrix
models that have been introduced [1] to reproduce in dimension D > 2 the successes of matrix
models in two dimensional quantum gravity.

However, the combinatorics of tensor models is more intricate than the matrix model one.
Progress in the field remained very slow until the advent of colored models [2]. Since then, many
results have been obtained. We refer, among other reviews, to the series "Tensor track" [3], that
retraces the development of colored models and its relation to quantum gravity.

Among these important results, let us mention the large N limit [4] and Gaussian universality
[5], as well as the construction of renormalisable models first in the abelian case [6], extended to the
non abelian case [7]., Here, we revisit these results in the light of Polchinski’s exact renormalisation
group [8], suitably adapted to tensor models. It is based on results that appeared in [9], see also
[10] and [11].

1. Random tensors

Random tensors are natural generalisations of random matrices that generate sums over ran-
dom higher dimensional geometries. In dimension D, we consider a rank D tensors T;, . ;, which
corresponds to a simplex of dimension D — 1, see figure 1.
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Figure 1: A random tensor in D = 4 and the associated tetrahedron

The tensors we consider are complex and we treat T and T as independent variables. Moreover,
we do not impose and permutational symmetry between the indices of the tensors. This formalism
is obtained from the original colored models [2] after integration over some of the degrees of
freedom [12].

Our aim is to study the "path integral” over tensors,

logZ:10g/deT exp{—T~C‘1-T+Vo(T7T)} = Z g (1.1)

Feynman graph ¢ <
dimension D triangulation

whose perturbative expansion yields a sum over a random triangulated geometries of dimension D,
weighted by an amplitude 7. These geometries are constructed by gluing together the simplices
represented by the tensors using the quadratic part of the action. The latter involves a propagator
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which is diagonal in the tensor indices

S S (1.2)
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with ¢ a positive parameter. Then, Wick’s theorem amounts to gluing the tetrahedra corresponding
to T and T together, see figure 2. To determine a suitable form for the interacting potential, we
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Figure 2: Gluing two tetrahedra using a propagator

impose that the latter be invariant under the unitary transformations,

’17 ’D_> Z 11J1' le[)lev-A--,JID7 117 Sip T Z 1111 ’ lD]DT]17 Jp> (1.3)
JisesJD

with (U',...,UP) € U(N) x --- x U(N). Any invariant potential can be expanded over graphs
called D-bubbles. A D-bubble is a bipartite D-colored graph, not necessarily connected. This
means that:

e There are two types of vertices, black ones e and white ones o.

An edge can connect only a black vertex to a white vertex.

At any vertex there are exactly D incident edges.

Each edge is decorated by a color in {1,...,D} in such a way that the colors of the D edges
incident to any vertex are all different.

The invariant associated to a D-bubble is defined by assigning a tensor 7" to a white vertex, a
tensor 7 to a black vertex, identify the indices i, in T and i, in T whenever they are connected by a
line of color k and summing over all tensor indices. In analogy with the trace invariants of matrix
models to which it reduces for D = 2, such an invariant is written as

Try(T,T) =

Z H T30, oo H Ti,... lv-DH5&7%(9),(-@5"ev"vo<e>.c<e>’ (1.4)

edge mdu,es black vertu.es white vertices edges

where e is an edge between a white vertex Vj(e) and a black vertex v(e) and c(e) its color. For
example, the invariants associated to two 3-bubbles are given in figure 3
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(a) Dipole graph (Gauflian measure)

Zimjb, ke Til iri3 le J2J3 Tk1k2k3 T;'lkzja le iz2ks Tk1j2i3
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Figure 3: Some bubble invariants

Then, the potential is expanded as

_ As _
Vo(T,T) = ’ Tr (T, T). 1.5
o(T,T) ;’C@ %(T,T) (1.5)

with A5 a coupling constant and Cy the order of the group of transformations preserving the
bubble. From a geometrical point of view, any bubble encodes a triangulation of dimension D — 1
obtained by gluing together simplices of dimension D — 1. They are the basic building blocks of
the dimension D triangulations in (1.1).

Finally, let us mention that beyond the partition function Z in (1.1), it may also be of interest
to compute the expectation value of some observables

o) - [dTdT O(T,T)exp{-T-C"" - T+W(T,T)}
— - .

Invariant observables can be also expressed in terms of bubble invariants.

(1.6)

2. Large N limit and melonic universality

In the case of matrix models, it is well known that the large N expansion leads to inverse
powers of the genus g of the triangulated surface

1 1 — — — 1
ﬁlogZ = ﬁlog/deM exp{-NM-C"" M+NVy(M,M)} = . Z o W%'
tri);ngulal%d Eul‘face
2.1
The genus g > 0 is defined through the Euler caracteristics
2 —2g =#{vertices} — #{edges} + #{faces}. (2.2)
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A similar result holds for random tensors, see the work by Gurau [4]. Here, we derive this result
from a renormalisation group equation.

The alluded renormalisation group equation is a tensorial version of Polchinski’s equation,
initially formulated in the context of field theory in [8]. In our context, it is a differential equation
for the effective potential V, (T, T) defined by
dT’dT
N

V[T, T) :log/ exp{_T.c;1.T+V0[T+T’,T+T/]}, (2.3)
with C; the ¢ dependent propagator as in (1.2) and .4/ a trivial normalisation factor. Note that in
this simple context, ¢ cannot be interpreted as a cut-off but is merely a parameter that controls the
flow. It interpolates between ¢ = 0 (no integration) and r = 1 (complete integration).

Following the partial integration technique presented in [13], the effective potential obeys the

differential equation
dvV. 9’V 9V oV

- — - = + . =
ot 9TIT JT IT
This equation is represented diagrammatically in figure 4. We refer to the first term as the loop

2.4)

term and the second one as the tree term. At a geometrical level for D = 3, this equation is pictured

'®- @ 00
ot B

Figure 4: Diagrammatic representation of Polchinski’s equation

in figure 5

Figure 5: Geometrical interpretation of Polchinski’s for rank 3 tensors

In order to translate equation (2.4) into a system of equations for the couplings A, it is helpful
to introduce the notion of a cut. A k-cut ¢ (for k € {0,1,...,D}) in a D-bubble A is defined as a
subset of k edges {ey, ..., e} of # with different colors. The cut bubble 4, is the bubble obtained
from £ by cutting the k edges {ey,...,e;} into half-edges, attaching to them a new black v and a
new white vertex v and joining v and v by D — k edges carrying the colors not in {ej,...,et}. This
ensures that %, is a bubble with D colors. In particular, if ¢ is a 0-cut, %, is just the disjoint union
of % with a dipole. A 1-cut on an edge e is just the insertion on e of a pair of vertices joined by
D — 1 edges carrying the colors different from that of e. Then, the flow equation for the bubble
couplings writes

oA D
Z=Y Y N+ Y Y s, 2.5)
k=0

k-cut ¢ D-cutc z 7"
K(Be)>K(B) p.=5'UB" veB veB
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L 1 1
%
(a) A 3-cut
1 1 1
N 3
(b) A 2-cut

Figure 6: Examples of cut operations

In this equation, the sum runs over k-cuts ¢ for 0 < k < D. The second term involves a summation
over D-cuts that increases the number of connected components k(%) of % and over ways of
writing %, as a disjoint union of a bubble %’ containing v and a bubble %" containing v. Finally,
let us emphasize that even if the initial potential ;) does not contain non connected bubbles, the
latter are generated by the loop-like term in the flow equation.

This system of differential equations for the bubble couplings A5 involves positive powers
of N and is therefore not suitable for a large N limit. It is helpful to introduce the analogue of
dimensionless couplings u4 in quantum field theory, defined by

g =N3P)y,. (2.6)
The scaling dimension of the bubble is defined as
0(AB) =2 —«x(AB) 2.7)

with k(%) the number of connected components of Z. Similarly, we rescale the propagator as

C— #.In terms of these new variables, the system of differential equations reads

D
8(194_;@ _ Z Z NK(BZ,C)—k up, + Z Z Ug Uz, (2.8)

k=0 heaute K(Fgc_)cgtfc(@) @F@/ug;ﬁ,ﬂave@”

where k(4,c) is the number of connected components of Z containing edges of the cut, except
for a D-cut that increases the number of connected components of %, in which case k(%4,c) = 0.
It allows to relate the number of connected components of %, and of £ as k(%.) = k(&) —
K(A,c)+ 1. Since k(A,c) < k, there are only non positive powers of N in (2.8). We give a few
example for low order bubble couplings in appendix A.

The system (2.8) can be solved iteratively at any finite order in # to express the bubble couplings
uz(t) in terms of the bubble couplings u4(0), with only non positive powers of N. Identifying the
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logZ

bubble coupling ug(1) with 7,

we arrive at a tensor model analogue of the large N matrix model
expansion (2.1),

1 1 _ D= 1 NDH((%‘)M@(O)
NDlogZzNDlog/deTexp{—N T-C -T—i-;’T

Try(T, T)} (2.9)

1
No@)

(2.10)

Feynman graph ¢ <
dimension D triangulation

where @ is a positive integer called the degree.

Moreover, if we are interested in the terms in (2.8) that survive in the limit N — oo, we only
consider contributions in the loop term such that k(#,c) = k. This means that we can perform
0-cuts or k-cuts with at most one cut edge in each connected component. Starting with the empty
bubble (corresponding to logZ), we obtain the dipole with a O-cut. Then, a repeated application
of the allowed cuts and of cuts that disconnect the bubbles in the tree term only generate melonic
bubbles .#. A bubble is melonic if, for every white vertex v, there is a black vertex v such that
removing of v and v increases the number of connected components by D — 1. A few examples
of melonic and non melonic bubbles are given in figure 7. Consequently, this leads to melonic
universality: limy_se I%Z only depend on the melonic couplings u_,(0). This result extends to the
expectation value of observables and it may be shown that the result can be computed in a Gauflian
theory [9]. Thus, we have a alternative proof, based on the renormalisation group equation, of
Gurau’s universality result [5].

e &

(a) Melonic bubbles (b) Non melonic bubbles

Figure 7: Melonic and non meloinc bubbles for D =3 and D =4

3. Group field theories

In dimension D, group field theories are quantum field theories defined on D copies of a group
G whose interactions are modelled on those of tensor models. Their perturbative expansion leads
to a sum over triangulations, weighted by a spin foam amplitude,

logZ = log / [d®][dd] exp {~B-C™1- D+ V(D,®)} = Y I G R )

Feynman graph ¢ <
dimension D triangulation

Spin foams amplitudes are space-time transition amplitudes between loop quantum gravity
states. We refer the reader to the monographs [14] and [15] for some background on loop quantum
gravity, spin foams and group field theories. Moreover, the reviews [16], [17] and [18] present
some general facts on group field theories. Models of interest in quantum gravity involve the
groups SU(2) (Euclidian D = 3), SO(4) (Euclidian D = 4) and SL(2,C) (Lorentzian D = 4).
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Here we work with tensorial group field theories. The group field is a complex one and we do
not impose any permutational symmetry of its argument. It is constructed in analogy with tensors

Ti.ip = ®(g1,--.8p)  Tiyip = D(&15---,8p)- (3.2)

g is not the complex conjugate of g but an independent group element that is an argument of
the complex conjugate field ®. ®(gy,...,gp) represents a D — 1 simplex and the group variables

g1,-..,8p are associated with its D (D—1)-faces and can be interpreted as parallel transporters, see
figure 9.
94
g1
A
93
92

Figure 8: The group field as a tetrahedron.

The group field is assumed to obey a closure condition, related to the gauge invariance of the
model,
®(g1,...,8p) = P(hg1,....hgp),  P(&.-...8p) = P(hE), ... . hgp). (3.3)
for every group elements / and h. The propagator is constructed using the heat kernel on the group
Hg,

Cano ({2e8,')) = / da/dhdh [T Holhgig "5 "), (3.4)

A 1<i<D

with A an IR cut-off and Ag a UV cut-off. Group integrations are performed using the Haar measure
and implement the required invariances. As for tensor models, it induces the gluing of (D—1)-
simplices, see figure 9, but now there is a non trivial separation between slow and fast modes, as is
usually the case in quantum field theory.

g4 — 0,
g3 — 03
g2 —— 0o
9 ——0

Figure 9: Propagation of a tetrahedron.

We expand the interacting potential over bubble couplings as

V(A o, (I) C@ /Hdgve ),¢( dgv (e),c(e)

/193( {gv() (&) @x(e), c(e))_l})H@@ma--~»§v,D)H‘I’(gV,1,-~-,gv,D) (3.5

black vertices white vertices
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where § is the Dirac distribution on the group, defined by [ dgd(g)f(g) = f(1). Note that we have

imposed translation invariance, so that the couplings only depend on the products g, ¢(e) (?v(e),c(e) )~

4. Power counting for Abelian models with closure cosntraint

Although the analogue of Polchinski’s equation can be formulated for a general group field
theory [9], we consider in this section only abelian models with group G = U(1)?. Besides being
technically much easier, this allows us to have a general formula depending on the dimension of
the group d and the rank of the field D, to be identified with the space-time dimension. Elements
of U(1) are paramterised as g = exp2in ¢ with 6 € [0,L] where L being a length. The heat kernel
covariance is

C(A,AO,{Q,-—@}):/fda Y exp{(x Y p§+izp,-(e,-ei)}6zpho, (4.1

(et 1<i<P

where we have enforced the condition Y ; p; = 0 so that the closure constraint is fulfilled. Since the
group is compact, the momenta p; € %Zd are discrete.

Formulated in momentum space, the system of differential equation for the bubble couplings
derived from Polchinski’s equation is

814— e 2 D 1 D
Aw’g;{\l”}) - —Pk;) Y X exP—Az{ Zpiz} Mg ({Pe}ecn {P}ige) O5p pio

k-cut ¢ {pl}lgé(:

2 D
= L L oo L i Undes o (s o

D-cutc B B
K(Be)>K(2B) .= VB veB B

4.2)

It is the group field theory analogue of Polchinski’s quantum field theory equation written for
correlation functions in momentum space. Because of the closure constraint, there is a momentum
conservation at every vertex of the bubbles. Note that 5219: | pr0 Can be omitted in the tree term since
this condition is already satisfied by the couplings. In the loop term, it reduces to dy,_. ;0. With a
sum reduced to momenta in the cut. If L is large enough (1/L < A) momenta can be treated as
continuous variables. Then, we replace sums by integrals

Y - Ld/dp and  8yp0 — L78() po). (4.3)
p

To investigate the large A behaviour, we introduce the analogue of dimensionless variables as

Aa({pet A = NP uz({q.} . A)  with  p. = Aqe.. (4.4)
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0(4) is a scaling dimension in the large A limit that that can be determined from the flow equation,

A IA =—6(%) ugé’({‘]e})"i_;Qe 94,

AS(Ze)—8(B)~2+d(D—k)—d

- Zki) Z [ d—d(D—k) /ngécdfh exXp— (Zi %2) Up, ( {Qe}ee@ ) {QI}1¢C) 0 (Ziec 6]i>

0<k<D
ck-cut

AS(Z)+6(8")~5(2) -2

2 Yy X T exp— (L02) ur({ge}ecm i ({90} eem):

D-cut ¢ Be=RB'0AB"
K(Be)>K(RB) veR! ven!

4.5)

In analogy with the tensor model case, let us assume that 6(%) can be determined in such a way
that the flow equation only involves non positive powers of A,

du(A)

AR

= Bo(u(B") + 1 Br (u(2) + 5 Bo(u(H) + ... 4.6)

In quantum field theory, the variables x4 would be truly dimensionless variables and we only have
Bo- In our context this is not possible, since (%) is only a scaling dimension for large A, not the
canonical dimension related to the rescaling of both A and L. A similar phenomenon has been first
noted in [19] in a similar context. Nevertheless, the negative powers of A are harmless as far as we
are interested in the UV regime.

To determine the scaling dimensions, let us make the ansatz

O0(#) =+ Bx(AB)+y(A), 4.7)

where k() is the number of connected components and v(%) the number of vertices. The expo-
nent of A in the tree term is

S(B)V+6(HB")—8(B)—2=a+p+2y-2, (4.8)
while for the loop term it is
S5(B,)—6(#)—2+d(D—k)—d=—dk—Bx(B,c)+B+2y—-2+d(D—-1), (4.9)

where we recall that k(4, ¢) is the number of connected components of % containing edges of the
cut and vanishes for a D-cut that disconnects the graph. It obeys k(%.) = k(%) — k(A,c) + 1.
Setting o« =d(D —1), B = —d, and 2y = —(d(D — 2) —2), the exponent of the tree term vanishes
while for the loop term it is d(k(%,c) — k), therefore always negative. Consequently, with a scaling
dimension

V(%)
5

the couplings u4 obey a flow equation with non positive powers of A. This scaling dimension

§(B) =d(D—1)—dK(B) — (d(D—z)—z) (4.10)

reduces to the one found in [7] by Carrozza, Oriti and Rivasseau using multiscale analysis for the
connected bubble k(%) = 1.

10
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In the Wilsonian picture, interactions with (%) > 0 are relevant, with (%) = 0 marginal
and with (%) < 0 irrelevant. In perturbation theory, relevant and marginal interactions are renor-
malisable, in the sense that we may choose their couplings to depend on Ag in such a way that all
quantities of physical interest remain finite in the limit Ay — oo.

Let us close by listing all the renormalisable interactions for Abelian models with closure
constraints. If we require 6(#) > 0, then v(#) <2+ ﬁ
at least 4 vertices, so that d(D —2) =4 or d(D —2) = 3. As a consequence, we only have five

. Interactions involve bubble with

renormalisable theories, as first discovered in [7] using multiscale analysis of Feynman graphs.

e D=3 andd = 4 so that § = 8 — 4K — v, with the unique renormalisable interaction

@ (8 =0).

The fixed point structure of a non Abelian version of this model has been studied in [20]
using the non Abelian group SU(2) x U(1).

e D=4 andd =2 sothat 6 = 6 — 2k — v with only quartic renormalisable interactions

[ Do [ Tmo

The second interaction is not melonic and called necklace in [21].

e D==6and d =1 so that § =5 — x — v. The renormalisable interactions are quartic with
melonic and non melonic interactions.

@@(5:0), @(8:0), @(6:0}.

The model was shown to be renromalisable in [22] and [23] and its fixed point structure, was
further investigated in [24] using a truncation of Wetterich’s equation.

e D=3 andd =3 so that § = 6 — 3x — v/2. The renormalisable interactions are quartic and

e (T o e

The first term is in fact superrenormalisable (6 > 0) and the last one is not melonic. The non

sextic

Abelian version with group SU(2) is the first non Abelian group field theory that has been
renormalised [7]. It is related to D = 3 quantum gravity.

e D=5andd = 1sothat 6 =4 — x —v/2. Renormalisable interactions are quartic and sextic,
with melonic interactions

11
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MQZI), M((S:O), @(520), €« (6=0).

This model, including the non connected interaction, has been shown to be renormalisable

in [22].

All these bubble couplings with v > 4 have dimension O or 1, so that there is no possibility
of adding a derivative coupling. A degree n derivative would change the scaling dimension from

O(A) to 8(A) —n. The case n = 1 is excluded if we assume rotational symmetry.

Finally, let us emphasise that there are non melonic interactions among the renormalisable

ones, which are usually set to O in the bare action. However, their actual behaviour under the

renormalisation group equation is not known and certainly deserves more study.

A. ERGE for low order bubble couplings

In this appendix, a few examples of evolution equations for rescaled couplings are given.

A.1 Couplings in rank D = 3 tensors models

9
St = [temmc=al g T 3”@ [y e+ (1] |3 s

1
+N [3 M@] ‘2(}11{9 N3 [MO@'@] ‘3 cuts

0
5%@:@ = [u@, Q:@Hoﬂﬁ[4um+2u@]\lcut+[4“@“®”3cms
8u +2”@+2M@ ’20uts

1

+N [4um”30uts N3 [4 > Q:O ‘3cuts

2
grtemme = [ amlloan T 64— pllicn T 640 locus

+ [4 tho—m catto—] \acms

(A1)

(A2)

(A3)

e gt gl + B b

12
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J 2

gu@ = [“@, @HOCH [6 “m““@}hcuﬁ [6 M®um+3”®] 5 cus
+%[3 ”@+6”@D+12um+6”®£&‘2cuts

1

1
+ﬁ[12 um+6u@”3cms+m[6u® @—1—3 MO:Q @]‘3cut3. (A4)

d
E“m = [”@ @:Q”muﬁ‘ [4um+”@+4um“1cm
+1[6 Uy um+2”®] 5 cuts

+;[6um+614@ +3u@+10um+2u ]|20uts

1
Tz l0 urt ”@+8 ]l cus
1

36U, 010" 2400 o s

(AS)

9
Gl = s lpen T 0U—, @] [yeut (182, m] [ cus

+[6 u@% N L= | R,

+%{ 9 S Q:O} o cus + 18 "< @] ’30Ut5}

1
275 B e cmm e =] s (A.6)

13
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)

5 Q:O = [M@® Q:O”OCM—FBMO:O ®+4M'@’m+2u@) @chm
+[8 ”m+4um”2cuts+[6 ”(6, Q:O”@_’_ALM@@MQEHRMS
+117{[3u©:© ®+8M@m+2u@@+2u® @HZCMS

@:O‘Fgu@-i-ﬂlum ‘3Cm§}

.@ Q:I:Q ‘3 cuts N3 @3@, @ ‘3 cuts ? (A7)

A.2 Couplings in rank D = 4 tensors models

d
Eu@' = [u©'o@'] ‘Ocut—i_ [4 MM] |1cut + [ug@-] ‘3 cuts

1 1
+N [6 u@] ‘2cuts + N2 [ @] }3 cuts N4 [MO@'@'] ’4cuts : (A8)

9
E”@ = [u@ M] ‘Ocut_‘_ [2 u@] ’1cut+ [4 u©u®] ’40Ut5
o {louprpllact 1 i,

—|—$ [2 u@ +12 um +12 M@+6 u%] ‘3cuts
[12 Mm] ‘4cuts N4 @ @ ‘40‘1“ (A9)

)

&‘u@ - [u@ @] ‘0cut+ [8 um] }1cut+ [4 MC@'M@] }40“‘5
1 1

+N[4u +16u%+4u%”2wts+m[16um+16u%]‘3cuts
8D 1

+ﬁ [8 um—{_él'u%}hcuts_‘_m[é‘ u@ @HM:MS' (A'IO)

14
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2
gt = bt B, gl bt (2l

(4 e sa et | curs
1

+N{ [12 u@ @] | cus T [24 ”m] ‘3cuts}
B Mﬂacmﬁ[8”@%”@”4%}

1
o 2 e e o=l i s A1)
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