
P
o
S
(
I
S
C
C
2
0
1
5
)
0
1
6

Improved Apriori Algorithm

Guowei Jiang1,Jianjun Wang
Hebei University of Economics and Business

Shijiazhuang, 050061, Hebei Province, China
E-mail: 1532198525@qq.com

Classic Apriori algorithm has the problem of multiply scanning database, and pattern matching
is a time-consuming issue. In this paper, we propose an improved Apriori algorithm based on the
classical Apriori algorithm. Improved algorithms numbers a binary number for each set. If
number 1 in logical AND result is not less than k-1, connect the two item sets and get candidate
k item sets. The new algorithm avoids a large number of pattern matching when connecting.
Application examples show that time complexity of it is reduced, and the algorithm is effective
and feasible.

ISCC 2015
18-19, December, 2015
Guangzhou, China

1Speaker

 Copyright owned by the author(s) under the terms of the Creative Commons
Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0). http://pos.sissa.it/

http://pos.sissa.it/

P
o
S
(
I
S
C
C
2
0
1
5
)
0
1
6

Improvement of Apriori Algorithm Guowei Jiang

1.Introduction

Association rule mining has been one of important researches about data mining. It studies
interesting patterns hidden in transaction databases、relational databases and other information
storage. In 1993, the famous American scholar, R.Agrawl, proposed single dimensional Boolean
association rule mining algorithm, then he made famous Apriori algorithm based on frequent
itemsets[1-2]. The main idea of this algorithm is an iterative method obtaining (k+1) frequent
items by k frequent items.Typical example of association rules is supermarket goods basket data
analysis. It analyzes the relationship between different commodities that customer put into the
basket, and then get the customers' buying habits. When mining association rules, how to
improve the efficiency of the algorithm is very important. There are already a lot of improved
algorithms based on Apriori algorithm[3-4]. Although these algorithms have advantages and
mining performance are significantly better than traditional Apriori algorithm, in general, they
are still relatively complicated algorithm. On the basis of the analysis of Apriori algorithm, an
improved algorithm is proposed, which makes the algorithm in the compressing data source,
improving the connection judgment and reducing the scanning of unnecessary transaction
obvious efficiency.

2.Apriori Algorithm and Deficiencies

2.1Apriori Algorithm

Apriori algorithm is the most classic association rules mining algorithm, which uses an
iterative search method step by step. First, scan the database and add up count for each item, and
find a collection of frequent one set according to minimum support. This is denoted by L 1. L1 is
used to find out frequent two sets L2, L2 is used to find out frequent three sets L3, keep looping
until we can not find frequent k itemsets. We need a full scan of the database to find Lk every
time.

Apriori algorithm uses a transcendental property (Apriori property) to compress the search
space, so that the efficiency of frequent itemsets produced layer by layer increases. Apriori
algorithm assumes that item of transactions and item sets are ordered by dictionary order.

2.2Apriori Algorithm Analysis and Inadequate

The traditional Apriori algorithm deficiencies following aspects:
(1)In the process of generating frequent k itemsets, you need to repeatedly scan the

transaction database. The size of the candidate set determines the number of scanning the
transaction database. If the size of the candidate k itemsets C k is |Ck|, you need to scan |Ck|
second database, and some scans are unnecessary, which potentially greatly increase I/O
loading.

(2)When generating candidate k-itemsets, comparison of determine the connection
conditions are too many times, and it will produce a large number of candidate k itemsets, and
many of them are duplicate and non-frequent. If you can prejudge some connections of some
items and other items are non-frequent itemsets, avoiding these useless join operations, the
efficiency of the algorithm can be improved.

(3)When calculating the candidate set frequency, Apriori scans all transactions many
times, spending a lot of time on pattern matching of the candidate set and the transaction. If in

2

P
o
S
(
I
S
C
C
2
0
1
5
)
0
1
6

Improvement of Apriori Algorithm Guowei Jiang

the process of scanning the transaction database, items or transactions which are unnecessary to
scan can be prejudged, it also can improve the efficiency of the algorithm.

2.3Apriori Algorithm Related Definitions and Theorems

Definition 1 {I1,I2,...,Im} is a collection of items, among them Ii I∈ .
Definition 2 Suppose task-related data D is a transaction database,D={T1,T2,…,Tn}. Each

of these transactions Ti is a collection of items, meeting Ｔ i
Ｉ .Each transaction has an

identifier Tid.For  Ti there is only one binary number corresponding to it, Ti={t1,t2,…,tn},
where ti=0 or 1.

Definition 3 AND operation.Ｔ i
 Tj={t1,t2,…,tn} {t1,t2,…,tn}={s1,s2,…,sn}, where

si=0 or 1. According to the definition of AND operation, the number of 1 in results of AND
operation is the repeat number of Ti and Tj. When generating k candidate itemsets, if the number
of 1 is not less than k-1, Ti and Tj can be connected.

3.Apriori Improvement

3.1Algorithm Improvement

(1)The storage structure: vertical structure
Improve data storage structure. The main idea is to use the new data structure[5-6], the

current level data structure is converted into the vertical data structure correspondingly. The new
structure consists of itemsets and transaction list that contains the itemset, for example, the table
1 transaction database D is converted into table 2.

Tid Items

T1 ABE

T2 ACD

T3 BD

T4 CDE

Table 1: the original transaction database

A B C D E

T1 T1 T2 T2 T1

T2 T3 T4 T3 T4

T4

Table 2: the item transaction database

The number of transactions that support k-itemsets through such transformation is easy to
calculate. The transaction set supporting item A is TA, the transaction set supporting item B is
TB, the itemsets not only supporting A but also supporting B are the same transaction between
the transaction set A and the transaction set B, namely: TAB=TA∩TB.

After application of this data structure, only in the calculation frequency of frequent 1 item
sets it scans the transaction database. Afterwards,calculate frequency of the candidate k
itemsetsCk (k>1) by frequent k-1 itemsets Ck-1. In addition, in the calculation of the support of
the candidate item sets, it avoids the pattern matching, and greatly improves the speed of the
algorithm.

(2)Join Optimization

3

P
o
S
(
I
S
C
C
2
0
1
5
)
0
1
6

Improvement of Apriori Algorithm Guowei Jiang

1) According to the definition that items can be connected, if lx, ly L∈ k-1, located lx[i] for

the lx in the i-th item, if lx[1]=ly[1] lx[2]=ly[2] ... lx[k-2]= ly[k-2] lx[k-1]<ly[k-1], the join
condition is satisfied. When generating k candidate itemsets, firstly compare the k-2 items of
itemsets are the same or not, if they are different, do not connect them. This will eliminate part
of the pattern matching problem, and is easy to improve the efficiency of the algorithm.

2) Number the candidates. In generating candidate item sets, according to definition 3, you
will do lots of logical AND operations, ALU components of the computer can quickly achieve
them. When the frequent itemsets’ length are long, it greatly speeds up the production rate of the
candidate item sets.

Initially, scan the database to calculate the number of candidates, and it is assumed to n.
The number of items in the frequent 1 itemsets (sorted by dictionary) is set to n-bit binary
number, only their location (in dictionary order) is 1, and the remaining bits are all 0. At this
point you can connect any two items, modify binary number once connected, the letter position
is 1.Construct tree with Ii as root, if the number of occurrences of {IiIj}is greater than or equal
to the minimum support number, Ij is Ii’s branch. if the number of occurrences of {IiIjIk} is
greater than or equal to the minimum support number, Ik is Ij’s branch, and so on. You finally
get n trees, if the number of 1 in the binary number corresponding to leaves is max, the branch
is frequent itemset.

E.g., L1 = {{A},{C},{D},{E}}, A is numbered 1000, C is numbered 0100, D is numbered
0010, E is numbered 0001. You can connect any two items, it generates three trees, child nodes
of one tree with A as the root are CDEF, branches are {AC} 1100,{AD} 1010 and {AE} 1001.
Child nodes of one tree with C as the root are DE, branches are {CD} 0110,{CE} 0101. Another
tree is {DE} 0011. Suppose they are frequent, when generating the candidate three itemsets, for

example, tree A, {AC} {AD} =1100 1010 = 1000, the number 1 in result is 1, which is
greater than or equal to k-1 (that is 1). So {AC} and {AD} can be connected to form {ACD}
1110, namely D is a child node of C.

Figure1: spanning tree

Suppose spanning tree is as shown above, scan the binary number of leaves, and get a
maximum of 1 is 3, so frequent itemsets is three sets. Deeply traversal spanning tree and obtain
three frequent sets are {ACD} and {CDE}.

(3)Pruning Optimization
If the k dimensional data itemset X={i1,i2,...,ik}, there is a j X that makes |L∈ k-1(j)|<k-1,

then X is not frequent item. Lk-1(j) denotes the number of j containing in the set Lk-1.

4

P
o
S
(
I
S
C
C
2
0
1
5
)
0
1
6

Improvement of Apriori Algorithm Guowei Jiang

Proof: Suppose X is frequent k itemsets, its’ k k-1 subset of the items are in Lk-1. However,
in the k k-1 subset generated from X, each project j X appears totally k-1 times. For any j X∈ ∈

there is |Lk-1(j)|≥k-1, which is a contradiction, so X is not frequent items.
According to this property, remove all frequent items including j included in the frequent

itemsets Lk-1, thereby obtaining a new smaller set of frequent k-1 project set. Examples are as
follows, provided minimum support min sup = 3.

Tid Items Tid Items

T1 I1,I3,I5 T6 I1,I4,I6

T2 I2,I4,I6 T7 I3,I4,I5,I6

T3 I1,I3,I4,I5 T8 I1,I3,I5

T4 I2,I3,I4 T9 I3,I5,I6

T5 I1,I3,I5,I6 T10 I1,I3,I5

Table 3: the original transaction database

Step 1 Scan original transaction database D (as shown in Table 3) once, and obtain the
vertical data structure, candidate set C1 and frequent set L1.

Step 2 frequent 1 itemsets self-join produces candidate two itemsets C2, C2={{I1,I3},
{I1,I4},{I1,I5},{I1,I6},{I3,I4},{I3,I5},{I3,I6},{I4,I5},{I4,I6},{I5,I6}}. According to (1),
calculate respectively frequencies of the candidate 2 itemsets, and remove sets whose frequency
is less than 3, then get frequent 2 itemsets L2, L2={{I1,I3},{I1,I5},{I3,I4},{I3,I5},{I3,I6},
{I4,I6},{I5,I6}}.

Step 3 Apply of the above property when two itemsets self-join produces candidate three
itemsets C3. |L2(I1)|=2, |L2(I3)|=4, |L2(I4)|=2, |L2(I5)|=3, |L2(I6)|=3. Since |L2(I1)|=2<3, so get rid
of all the items contain I1, similarly remove all items that contain I4. Thereby L'2={{I3,I5},
{I3,I6}, {I5,I6}}. Then L'2 self-join generates three sets of candidate C3={{I3,I5,I6}}, the
frequency count is three. So frequent item set is {I3,I5,I6}.

3.2Description of Improved Algorithm Steps

(1)First, scan the source transaction database. In the scanning process, record transaction
codes support for each item, and all items are sorted according to the dictionary. Then number a
number of length n for each and assign them, count frequency for each item. You should delete
frequency count that is less than the minimum support, resulting in frequent 1 set L1.

(2)Frequent 1 set self-join produces candidate two sets C2. Connect any two items and
change the corresponding number, then construct tree. By calculating the intersection of two
items obtain transaction code set supporting the itemsets, remove itemsets whose support count
is less than the minimum support, then get frequent 2 itemset L2.

(3)And so on, to the frequent k-1 itemsets, use firstly of connecting optimization methods
and pruning optimization methods and remove k itemsets which are frequent impossibly. If
number 1 in logical AND result is greater than or equal to k-1, connect the two itemsets and get
candidate k itemsets. By calculating intersection of transactions which support frequent k-1 sets
in candidate k itemsets(located x L∈ k-1, y L∈ k-1, then x∞y C∈ k, namely Tx∞y= Tx∩Ty), get
transaction sets supporting k itemset, then delete itemsets whose frequency is less than the
minimum number, finally get frequent k item sets Lk, and construct frequent k item sets tree.

(4)Repeat (3) until no more frequent itemsets generate. Deeply traversal spanning tree and
obtain frequent k sets.

5

P
o
S
(
I
S
C
C
2
0
1
5
)
0
1
6

Improvement of Apriori Algorithm Guowei Jiang

3.3Experimental Analysis

Advantages of improved Apriori algorithm：
(1)The algorithm just scan once the database, the time spent is Apriori’s 1/
(2)AND operations of n dimensional Boolean vectors replaces pattern matching between

transaction items.It will greatly reduce the resource consumption of ALU, and improve pointing
efficiency.

(3)The algorithm eventually generates m trees. Using "depth-first algorithm", select and
calculate a tree with the maximum levels(maximum depth), generate maximum frequent
itemsets as soon as possible. This will further enhance the operational efficiency of the
algorithm, reducing the use of computing resources.

The algorithm can achieve lightweight calculation.
In order to test the efficiency of the improved algorithm, this paper carried out experiments

on a large number of databases. The data size is fixed at 5000 records (using IBM's DBminer2
synthesis tool). Parameters of the synthesized data are as follows: the average number of items
each record contains T=10, the average length of itemsets I=4, projects number N=20. Under
the same conditions with the hardware configuration, efficiency of Apriori algorithm and
Apriori improved algorithm is tested, experimental data is as shown in Table 4. From Figure 2,
we can see the improved algorithm has some improvements in time.

min sup
(%)

Apriori running
time(s)

improved Apriori
running time (s)

0.1 51 42

0.2 30 21

0.5 20 10

1 10 7

2 4 2

Table 4: test result
The test results comparison chart according to test data is as follows.

Figure 2: test results comparison chart

6

0

10

20

30

40

50

60

0.10 0.20 0.50 1.00 2.00

t
im

e

min sup

Apriori running time

improved Apriori running
time

P
o
S
(
I
S
C
C
2
0
1
5
)
0
1
6

Improvement of Apriori Algorithm Guowei Jiang

4.Conclusion

This article begins with the theoretical basis of Apriori algorithm, extend its basic theory
and obtain an improved Apriori algorithm. The algorithm is improved in three aspects. First is
data storage, scan the entire database only one time, when counting only transaction codes
match instead of matching each item in transaction. The second point is, use the nature to
remove invalid candidate sets. Third, number the binary digits for itemsets, if number 1 in
logical AND result is not less than k-1, connect the two itemsets and get candidate k itemsets. It
avoids a large number of pattern matching. Thus the improved algorithm has a higher efficiency
than the classical Apriori algorithm.

References

 [1]AGRWAL R,SRIKAN R. Fast algorithms for mining association rules in large
database[C]//Proceeding soft the 20th International Conference on Very Large Data Bases. San
Francisco: Morgan Kaufmann Publishers,1994:487-499.

[2]Jiawei Han, Xiaofeng Meng, Data mining concepts and technologies the third edition of the
original book[M], Mechanical Industry Press, Beijing, August 2012, 160-166, (InChinese).

[3]Yan Shen, Shunlin Song, Efficient data mining algorithm on large-scale data collection[D], PhD
Thesis, Jiangsu University, June 2013, (InChinese).

[4]Ke Luo, Caiwang He, an association rules extraction algorithm based on Apriori algorithm[J],
Computer and Digital Engineering, 2006, 34 (4):48-51, (InChinese).

[5]Yunfeng Li, Jianwen Chen, Daijie Cheng, Study about association rules mining and improvement
of Apriori algorithm[J], Computer Engineering and Science, 2002, 24 (6):65-68, (InChinese).

[6]Wandan Zeng, XubobZhou, Bo Dai, Matrix algorithm of mining association rules, Computer
Engineering[J], January 2006, 32 (2):45-47, (InChinese).

7

	1.Introduction
	2.Apriori Algorithm and Deficiencies
	2.1Apriori Algorithm
	2.2Apriori Algorithm Analysis and Inadequate
	2.3Apriori Algorithm Related Definitions and Theorems

	3.Apriori Improvement
	3.1Algorithm Improvement
	3.2Description of Improved Algorithm Steps
	3.3Experimental Analysis

	4.Conclusion
	References

