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Artificial neural networks has been effectively applied to numerous applications because of their
universal  approximation  property.  This  work  is  grounded  on  two  frameworks.  Firstly,  it  is
concerned with solving universal approximation problem by a class of neural networks based on
Hankel approximate identity which is embedded in the space of continuous functions on real
positive numbers. Secondly, this problem solving will be investigated in the Lebesgue spaces on
real positive numbers. The methods are constructed on the notions of Hankel convolution linear
operators, Hankel approximate identity, and epsilon-net.
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1. Introduction

It is well known that the problem of the universal approximation by feedforward neural
networks has been solved in 1990s. Solving universal approximation problem by feedforward
neural networks can be conceptually defined as an unlimited number of activation functions can
theoretically approximate a continuous functions. Principe and Chen [1] surveyed the recent
history of solving universal approximation problem by artificial neural networks.

On the other side, the study of the Hankel convolution linear operators was started by
Zemanian [2]. Arteaga and Marrero [3], and Baddour [4] developed Hankel convolution theory.
Recently,  Hankel  convolution  linear  operators  have  attracted  many  interests  since  these
operators have many applications such as solving optic problems [5], radiation, diffraction, and
field projection [6], and neutron transportation equation [7].

In this work, we are motivated to use Hankel convolution linear operators based on the
Hankel approximate identity notion in order to construct a class of feedforward neural networks.
Two aims are sought to be achieved in the present paper. The first aim is to apply a class of
feedforward neural networks based on Hankel approximate identity to approximate continuous
functions on real positive numbers. Subsequently, Lebesgue integrable functions on real positive
numbers will be approximated by applying the same networks.

The approach of  this  work is  as  follows:  we  primary introduce the notion  of  Hankel
approximate  identity  which  is  an  extension  of  approximate  identity.  We  apply  Hankel
approximate identity to prove the uniform convergence of a class of the Hankel convolution
type operators in the space of continuous functions on real positive numbers. In the next step,
we  study  the  universal  approximation  by  feedforward  Hankel  approximate  identity  neural
networks in the space of continuous functions on real positive numbers. Moreover, we focus on
the analysis of the uniform convergence of Hankel convolution type operators in the Lebesgue
spaces on real  positive numbers.  Then,  we prove the universal  approximation by the above
neural networks in the Lebesgue spaces on real positive numbers.

It is important to note that the advantage of this works is to construct some developments
for theoretical research on solving universal approximation problem by feedforward artificial
neural networks. The drawback of this work is the lack of numerical simulations.

The outline of this paper is as follows: Section 2 will focus on the introduction of Hankel
approximate  identity  notion.  Moreover,  some  basic  definitions  used  in  this  paper  will  be
presented in this section. In Section 3, we give two theoretical results concern with universal
approximation by a class of feedforward neural networks based on Hankel approximate identity
in the space of continuous functions on real positive numbers. In Section 4, we derive another
two theoretical results in the Lebesgue spaces on real positive numbers. In Section 5, we give
conclusion and future directions for research.

2. Notations and Definitions

Throughout this paper, the space of continuous functions on real positive numbers will be
presented by C(R

+
).  We also denote by L

P
(R

+
), 1 ≤p < +∞, the Lebesgue spaces on real positive

numbers. Before tackling our analyses, it is required to recall a number of basic notions. We
start with the definition of the Hankel approximate identity.

Definition1: Let{ φn (x)}n N∈ , φn ( x) : R+→ R  be  a  Hankel  approximate  identity  if  the

following properties hold:

1) ∫R
+φn ( x ) d x=1 ;    

2)  let  us  assume  that   >0  and  0 ,  there  is  an  N given  that  if  Nn  then

∫x>δ (φn ( x))d x≤ε.

Definition 2: The below equation is the definition of convolution in the Hankel sense
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f * H    g   of two given functions f , g : R+→ R

                                               (2.1)
Let us now state the epsilon-net notion in functions spaces.
 Definition 3: [8] Let   ε>0.  A set V ε⊂C ( R+)  is called epsilon-net of a set  V  

in C ( R+) , if  f̃ ∈V ε  can be found for ∀  f ∈V such that ( f − f̃ )C (R+)
<   ε  .

Definition 4: [8] Let ε>0.  A set V ε ∈L
P
(R

+
) is referred to as epsilon-net of a set  V  in

LP  (R
+
) if  f̃ ∈V ε  can be obtained for ∀  f ∈V  provided that

 <   ε  .

Definition 5:  [8] If the epsilon-net includes a finite set of elements, it can be said to be
finite epsilon-net.

3. Solving Universal Approximation by a Class of Neural Networks Based on 
Hankel Approximate Identity in the Space of Continuous Functions on Real 
Positive Numbers

This  section  gets  Theorem 3.1.  According  to  Theorem 3.1,  Hankel  convolution  linear
operators  based  on  Hankel  approximate  identity have  uniform convergence  property in  the
space of continuous functions on real positive numbers.

Theorem 3.1 Suppose  C  (R
+
)  be  the  space  of  continuous  functions  with  a  compact

support on R
+
. Suppose{ φn (x)}n N∈  , φn : R+→ R  be a Hankel approximate identity. Suppose

f    be a function in  C ( R+) . Then φn* H   f  uniformly converges to   f  on C  (R
+
) . 

Proof. Let x∈(0 , δ )  and ε>0 . There is a  η >0 provided that

( f ( x )− f ( y ))<ε  for all   y , ( x− y)<η . Then,

φn* H f ( x)− f ( x)=∫
0

+∞

φn ( y ) f ( x y ) d y− f ( x )                          (3.1)

                     (3.2)
   

   (3.3)
=I

1
+ I

2

                                                   (3.4)
where   I 1 , I 2 are as follows:

( I 1)≤∫
0

δ

φn ( y ) ( f ( x y)− f ( x) )d y                             

(3.5)

(3.6)
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       ≤
ε
2
∫
0

+∞

φn ( y ) d y                                                     

(3.7)

                                                           ≤
ε
2

(3.8)
For I 2 , we have

 (3.9)

Since 

   lim
n→∞

⁡∫δ

+∞
∣φn ( y )∣d y=0 ,                                         (3.10)

there exists an n0∈N  such that for all n≥n0
,

(3.11)

Combining I 1
 and I 2

 for n≥n0 
, we have 

  (3.2)
Using Theorem 3.1, we immediately have Theorem 3.2 as the fundamental outcome of this

section. For proving Theorem 3.2, we use the same method which was used by Wu et ’al.[9].
Theorem 3.2 illustrates  that  feedforward Hankel  approximate  identity neural  networks have
universal approximation property in the space of continuous functions on real positive numbers.

Theorem 3.2 Suppose C ( R+)
 be the  space of continuous functions with a compact support

on  R+ ,
  and V⊂C ( R+)  a  compact  set.  Suppose { φn (x)}n N∈  , φn : R+→ R  be  a  Hankel

approximate identity. Suppose { ∑ j=1

M
λ j φ j ( x)∣λ j  ∈R ,  x∈R+,  M  ∈ N} be dense in C(

R+ ), and given 0 . Then there is N ∈N which depends on 
V

and 


but not on f , such that

for any f ∈V  there are weights ),,( Vfcc kk   satisfying

( f ( x )−∑
i=1

N

ck φk ( x))C (R+)

<ε                                                               

(3.13)

Moreover, every
kc is a continuous function of Vf  .
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Proof. For any assumed ε>0, there is a finite  
ε
2

-net  ( f 1 ,… f M )  for a compact set V.

This indicates that for any f ∈V ,  there is an f j  such that ( f − f j )C ( R+)
<

ε
2

. For any given

f j , considering Theorem 3.2 ’s assumption, there are  λi
j
∈R ,  N j∈N , and φi

j
( x )  such

that

( f j ( x )−∑
i=1

N

j
λi

j φi
j
( x ))C ( R+)

<
ε
2

.                           (3.14)

For any given  f ∈V ,  we define

F−( f ) ={ j│ ( f − f j )C ( R+)
<

ε
2

},                                    (3.15)

F 0 ( f ) ={ j│ ( f − f j )C ( R+)
=

ε
2

},                                     (3.16)

F
+( f ) ={ j│ ( f − f j )C ( R+)

>
ε
2

}.                                     (3.17)

As the result,  based on the definition of  ε
2
 -net,  F−( f )  is not empty.  If  f̃ ∈V  limits  f

provided that ( f̃ − f )C( R+)

 is small, hence we get F
−( f )⊂F

−( f̃ )
and F

+( f )⊂F
+( f̃ )

. Thus  which

indicates F
−( f̃ ) ⊂  F−( f )∪  F0( f ) . The ending part is the following result.

      
   F−( f )⊂F

−( f̃ )⊂F−( f )∪F 0 ( f ).                                   (3.18)

Define

d ( f )=( ∑
j∈F

−( f )

( ε
2
−( f − f j )C ( R+)))

−1

                                     (

(3.19)
and

          f h= ∑
j∈F

−( f )

∑
i=1

N

j
d ( f )( ε

2
−( f − f j )L p( Rd

))λ i
j φi

j ( x)                                                                   

(3.20)

Then  f h∈{∑
j=1

M

λ j φ j ( x)}  approximates f :

( f − f h)C ( R+)

 
(3.21)
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(3.22)

(3.23)

   < ∑
j∈F

− ( f )

d ( f )( ε
2
−( f − f j )C ( R+))( ε

2
+

ε
2) =ε.                                                                

(3.24)

Next, the following part is dedicated to the proving continuity of ck
. We apply (3.18) to get

∑
j∈F

−( f )

( ε
2
−( f̃ − f j )C (R+))

(3.25)

    ≤   ∑
j∈F

−( f )

( ε
2
−( f̃ − f j )C (R

+)) +

∑
j∈F 0 ( f )

( ε
2
−( f̃ − f j )C (R

+)).                                     

(3.26)
Suppose f̃ → f  in (3.26), we derive

∑
j∈F

−( f̃ )

( ε
2
−( f̃ − f j)C (R+))→ ∑

j∈F
− ( f )

( ε
2
−( f − f j )C ( R+))                        (3.26)

This obviously shows d ( f̃ ) →d ( f ) . Hence,  f̃ → f  results

d ( f̃ )( ε
2
−( f̃ − f j )C (R+)) λi

j
→d ( f )( ε

2
−( f − f j )C ( R+))λ i

j.                       (3.28)

Suppose N= ∑
j∈F

− ( f )

N j  and define ck
in terms of 

(3.29)

(3.30)

From (30), ck
 is  continuous. 
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4. Solving Universal Approximation by a Class of Neural Networks based on 
Hankel Approximate Identity in The Lebesgue Spaces on Real Positive Numbers

In order to prove Theorem 4.2, Theorem 4.1 is provided.  

Theorem 4.1: Assume 1≤ p≤+∞ . If f  ∈ LP  (R
+
)then

                                      (4.1)
Now,  we  can  prove  Theorem  4.2  that  demonstrates  that  Hankel  convolution  linear

operators  based  on  Hankel  approximate  identity have  uniform convergence  property in  the
Lebesgue spaces on real positive numbers.   

Theorem 4.2: Suppose LP( R+)
 be the  spaces  of Lebesgue integrable  functions with a

compact support on R+ . Suppose { φn (x)}n N∈  , φn : R+→ R  be a Hankel approximate identity.

Suppose  f  be a function in   LP  (R
+
) .Then φn* H   f  converges uniformly to f  on 

LP  (R
+
).

Proof. Using generalized Minkowski inequality, we get the following relation: 

 
(4.2)

                                (4.3)
       

Using Theorem 4.1, for any ε>0 ,  there is a η＞0  such that if  ( x y− x)<δ ,  

.
(4.4)

Using triangular inequality, we conclude that

.                                                (4.5)

Applying the last inequalities (4.5) and (4.4) in inequality (4.3), the following relations
obtained:

(4.6)

(4.7)

(4.8)

According to Definition1, there is an N provided that for n≥N

7
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(4.9)

Using inequality (4.9) in inequality (4.10), we get for n≥N

                     (4.10)
                                    

(4.11)
We  are  now  in  a  position  to  introduce  Theorem  4.3  that  illustrates  that  a  class  of

feedforward  neural  networks  based  on  Hankel  approximate  identity  have  universal
approximation property in the Lebesgue spaces on real positive numbers.

Theorem 4.3: Suppose LP( R+)
 be the spaces of Lebesgue integrable functions on with a

compact support on R+ ,
 and                        a

compact set. Suppose  { φn (x)}n N∈   , φn : R+→ R  be a Hankel approximate identity. Suppose

the family of functions { ∑ j=1

M
λ j φ j ( x)∣λ j  ∈R ,  x∈Rd , M  ∈ N be dense in  LP( R+)

, and given

0 .  Then there is  an  N ∈N ,  which depends on  V and   but not  on  f ,  such that  for any

,Vf   there are  weights ),,( Vfcc kk   satisfying

( f ( x )−∑
i=1

N

ck φk ( x ))LP( R+)

<ε                                                           

(4.12)
Moreover, every kc is a continuous function of Vf  .

   Proof. For any given ε>0, there is a finite  ε
2
-net  ( f 1 ,… f M )  for a compact set V. This

implies that for any f ∈V ,  there is an f j  such that ( f − f j )LP( R+)
<

ε
2

. For any f j , by assumption

of the theorem, there are λi
j
∈R ,  N j∈N , and φi

j
( x )  that

( f j ( x )−∑
i=1

N

j
λi

j φi
j
( x ))LP (R+)

<
ε
2

.                           (4.13)

For any given f ∈V ,  we set

F−( f ) ={ j│ ( f − f j )LP( R+)
<

ε
2

},                                  (4.14)

F 0 ( f ) ={ j│ ( f − f j )LP( R+)
=

ε
2

},                                  (4.15)

F
+( f ) ={ j│ ( f − f j )LP( R+)

>
ε
2

}.                                   (4.16)

As the result, based on the definition of ε
  2

 –net,  F−( f )  is not empty set. If  f̃ ∈V  limits f  

provided that ( f̃ − f )LP (R+)

 is small, then we derive  F
−( f )⊂F

−( f̃ )
and  F

+( f )⊂F
+( f̃ )

. 

Hence,                                           

which indicates F
−( f̃ ) ⊂  F−( f )∪  F0( f ) . The ending part is the following relation.
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   F−( f )⊂F
−( f̃ )⊂F−( f )∪F 0 ( f ).                                         (4.17)

Define

 d ( f )=( ∑
j∈F

− ( f )

( ε
2
−( f − f j )LP (R+)))

−1

                                                                                               

(4.18)
and

          f h= ∑
j∈F

−( f )

∑
i=1

N

j
d ( f )( ε

2
−( f − f j )LP ( R+))λi

j φi
j ( x )                                                              

(4.19)

Then  f h∈{∑
j=1

M

λ j φ j ( x)}  approximates f : ( f − f h)LP( R+)

                        = ( ∑
j∈F

−( f )

d ( f )( ε
2
−( f − f j )LP( R+))( f −∑

i=1

N

j
λi

j φi
j
( x ) ))LP( R+)

(4.20)

(4.21)

(4.22)

        < ∑
j∈F

− ( f )

d ( f )( ε
2
−( f − f j )LP ( R+))( ε

2
+

ε
2)

(4.23)
=ε.                                                                   (4.24)

Next, the following part is dedicated to the proving the continuity of ck
. We use (4.17) to 

derive ∑
j∈F

−( f )

( ε
2
−( f̃ − f j )LP ( R+))

(4.25)

9
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           (4.27)

Let f̃ → f  in (4.27),  we get

  ∑
j∈F

− ( f̃ )

( ε
2
−( f̃ − f j )LP (R

+))→ ∑
j∈F

−( f )

( ε
2
−( f − f j )LP( R

+))                                                     

(4.28)
Apparently, this ascertain that d ( f̃ ) →d ( f ) . Thus,  f̃ → f  results

         d ( f̃ )( ε
2
−( f̃ − f j)LP ( R+))λi

j
→d ( f )( ε

2
−( f − f j )LP( R+)) λi

j.                (4.29)

Let N= ∑
j∈F

− ( f )

N j  and define ck
in terms of 

  (4.30)

(4.31)
From (4.29), ck

 is  continuous.

5. Conclusion

Hankel approximate identity notion has been constructed. Then, the theoretical framework
has been discussed in two directions. First, we have shown that how Hankel convolution linear
operators  can  be  used  to  driven  analysis  of  the  universal  approximation  by  a  class  of
feedforward neural networks based on Hankel approximate identity in the space of continuous
functions on real  positive numbers.  Second, we have indicated that  how to obtain universal
approximation by thenetworks in the Lebesgue spaces on real positive numbers. The results may
be highlighted, if we provide the experimental evaluation about the proposed theorems in our
further work.
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