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Many engineering, physics, chemistry, and computer science problems involve solving systems
of linear algebraic equations (SLAE). It is an important issue in scientific computing field. In
this  paper  we  study  the  Monte  Carlo  methods  (MCMs)  for  solving  SLAE.  We  take  the
advantage of Graphic Processor Unit (GPU) to accelerate MCMs for solving SLAE. The result
of  numerical  experiments  demonstrates  that GPU is  very  suitable  for  speeding  up  this
application. Moreover, the accelerated ratio can be up 50X with the problem size increasing.
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1.Introduction

Many engineering,  physics,  chemistry,  and computer science problems involve solving
systems of linear algebraic equations (SLAE). Solve SLAE   

Ax=b ,                                                                   (1.1)
Where A∈Rn×n is a given matrix, and b=(b1,b2,…,bn)t∈Rn is a given vector,  x∈Rn is the

solution.  The  classical  methods include  direct  methods,  iterative  methods  and Monte Carlo
methods(MCMs). MCMs for solving linear algebra problems can be traced back to 1950s [1]. 

There are some important features of these methods:  1)  one of the important features of
these methods is that they can be used for calculating only one component of the solutions.
Therefore MCMs have advantages compared to other methods when only a few components are
needed to be calculated.  2) The complexity of MCMs is independent of the problem size is
another important feature. The time complexities of direct method and the iterative methods are
O(n3) and O(n2k) respectively, where  n is the size of solution vector and  k is the number of
iterations [2]. While in using MCMs, the time complexity is O(N-0.5), where N is the number of
Markov chains [3].  Using quasi-random sequences instead of pseudo-random sequences can
accelerate the speed to O((logkN)/N) [4]. There are some improvements of sequences techniques
presented [5,6]. For large systems, specifically for sparse large systems, MCMs have preferable
performance, and only need to calculate none-zero elements [7].  3) Another feature is that the
solving process of each component is naturally independent. So we can conveniently parallel
implement these methods. It implements Monte Carlo algorithms for sparse SLAE using MPI
[8],  authors tried to  compress  the  data  and  minimize  the  communications  during  the
computation [9].  Authors tried to use MapReduce computing model to implement MCMs for
solving SLAEs [10]. 4) One more feature of MCMs is that the result is relatively rougher than a
direct method and the iterative methods, so solutions are suitable for some scenes e.g. obtaining
coarse estimation, and will be refined by other methods.

Considering  that it is  easy to parallel MCMs on  many-core environment and  GPU is a
many-core  computing device,  we hope to  implement  this  application on GPU to accelerate
MCMs for solving SLAE. GPU are getting considerable attentions not only from image but also
from computing,  after  NVIDIA introduces a GPU-based general  purpose parallel  computing
architecture – CUDATM. Driven by the insatiable market demand for real-time, high-definition
3D graphics, the programmable GPU has evolved into a multicore processor with tremendous
computational horsepower and very high memory bandwidth . In CUDA, GPU works with CPU
simultaneously.  CPU takes charge of serial  transactions which involve complex logic,  while
GPU is responsible for highly parallel tasks. We will implement and optimize both MCMs for
solving SLAE on GPU to contrast with CPU.  The performance of experiments is inspiring. The
accelerate ratio can be up 50X with the problem size increasing.

We  have  organized  the  rest  of  this  paper  in  the  following  way:  in  Section  2  some
background information is  introduced on the ongoing research.  Then the  implementation of
MCMs on GPU for solving SLAE is presented and our work on optimizing implementation is
presented in Section3. In Section 4 we use experiments to support our claim. Summarizes the
key observations  in Section 5.

2.Monte Carlo Methods for Solving Systems of Linear Equations

In this section, we briefly introduce the basic knowledge about MCMs and QMCMs for
solving SLAE, which is helpful in understanding our work in following sections.

2.1 MCs for SLAE

Let us consider a system of linear algebraic equations mentioned in Eq. (1.1). It is known
that the system of linear algebraic equation given by Eq. (1.1) can be rewritten in the following
iterative form [7]:

x=Lx+ f .                                                               (2.1)
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When  matrix  L  satisfies  max ∑
j=1

n

∣lij∣<11≤i≤n
,  the  iteration  will  converge.  We  call

matrix L and vector f iterative matrix and iterative vector respectively.

The matrix L and vector f norms are determined as follows:
∥L∥∞=max ∑

j=1

n

∣lij∣<11≤i≤n

, ∥ f ∥∞=max ∣ f i∣1≤i≤n .
Then apply the iterations as follows:

x(0 )= f
⋮

x (k )=Lx (k−1) f
⋮

,                                                        (2.2)

Therefore,

x= f +Lf +L2 f +⋯+L( k−1) f +L(k ) f +⋯ .                             (2.3)

Assume xm is the m-th component of x, then xm can be presented as follows:

   xm= f m+∑
i1=1

n

lmi1
f i 1

+ ∑
i1, l 2=1

n

lmi1
l mi2

f i2
+⋯+ ∑

i1,l 2,⋯ ,ik =1

n

lmi 1
lmi2

⋯lmi k
f i k

+⋯         
(2.4)

Define the matrixes B,P∈Rn×n and lmj=bmjpmj,bmj and pmj statisfy as follows:

{pmj>0,if amj≠0
pmj≥0,if amj=0

and {bmj=
amj

pmj

, if amj≠0

bmj=0, if amj=0
.                             (2.5)

Hence Eq. (2.4) is transformed into:

xm= f m+∑
i 1=1

n

bm i1
pmi1

f i 1
+ ∑

i1,l 2=1

n

bmi 1
bm i2

pmi1
pmi 2

f i2
+⋯+ ∑

i1,l 2,⋯, ik =1

n

bmi1
bmi 2

⋯bm ik
pmi 1

pmi 2
⋯l mi k

f ik
+⋯ .  (2.6)

Suppose now chain S is an infinite discrete Markov chain with n states, we have

          S=s0 → s1 →⋯→ s j →⋯                                                 
(2.7)

where sj∈n states {1,2,…,n}, for j=1,2,…, s0is start state.
We further define the transition probability to state sβ from state sα

P (sk=β ∣sk−1=α )= pα β ,                                               (2.8)
for α=1,2,..,n and β=1,2,..,n.
Suppose that  pαβ satisfies Eq. (2.5) and ∑nβ

=1 pαβ=1. The probabilities  pαβ, for  α,  β=1,2,..,n,
thus define the transition matrix  P. The matrix  B can be computed in terms of the transition
matrix P and matrix L.

Define the random variables Wj according to the recursion:
W j=W j−1×bs j−1 s j

=bs0 s1
bs1 s2

⋯bs j−1 s j , W 0=1 .                         (2.9)
Also define random variable θ*:

   
θ *

=∑
k=0

∞

W k f s k                                                         
(2.10)

Eθ
*
= f s0

+∑
s1=1

n

bs0 s1
ps0 s1

f s1
+⋯+ ∑

s1 , s2 ,⋯ ,sk=1

n

bs0 s1
b s1 s2

⋯b sk−1 sk
ps0 s1

ps1 s2
⋯ psk−1 sk

f sk
+⋯

   
(2.11)

Thus when s0=m, Eq. (2.11) is equal to Eq. (2.6). It is clear that MCMs can solve only one
component of the solution vector once and each component is solved independently.

According to Laws of Large Number:

lim
N →∞

P (∣
1
N
∑
i=1

N

θ r
*−Eθ *∣>ε )=0 ,                                      (2.12)

where N is the number of chains, θ*
r  is the value of θ* in the r-th chain and ε is the probable

error.
Hence, we have

3
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x i≈
1
N
∑
r=1

N

θ r
* .                                                      (2.13)

The key  results concerning minimization of probable error and the definition of almost
optimal transition frequency for MCMs applied to  the  calculation via iterated functions are
presented [11].

The transition matrix P is chosen with elements

pα β=
∣α α β∣

∑
β

∣α α β∣
,for α ,β=1,2,… , n. .                                 (2.14)

It is close to the optimal transition frequency function [11].

2.2 Estimations of Error

Now we will outline the method of estimation of N and T.
(1) The estimation of length of chain, T
Because the length of the Markov chain is infinite in theory, but the length must be finite

in simulation, the sum for θ* must be stopped when ∣W i f si∣<δ , for a given δ. Therefore, for

a given δ, the length of chain T can be estimated as follows:

  ∣W i f si∣=∣bs0 s1
⋯bsi−1 si∣∣ f si∣=∣

∣as0 s1
⋯asi−1 si∣

∣as0 s1∣

∑
s1

∣as0 s1
∣

⋯
∣as0 s1∣

∑
si

∣as0 s1
∣∣
∣ f si∣≤∥L∥i

∥ f ∥              (2.15)

T=i≤
log(δ

∥ f ∥
)

log(∥L∥)
,                                                   (2.16)

where δ is the truncation error.
(2) The estimation of number of chains, N
For a given error ε, according to Eq. (2.15), we have ∣W i f si

∣≤∥L∥i
∥ f ∥ .

Then it follows that

∣θ *∣≤∣W 0 f s0
∣+⋯+∣W i f si

∣+⋯≤∥L∥
0
∥ f ∥+⋯+∥L∥0

∥ f ∥+⋯=
∥ f ∥

(1−∥L∥)
.       (2.17)

Thus

Dθ *
≤Eθ *2

≤
∥ f ∥2

(1−∥L∥)2 .                                             (2.18)

According to the Central Limit Theorem:

N≥
0.67452

ε 2 Dθ * ,                                                   (2.19)

and

N≥
0.67452

ε 2

∥ f ∥2

(1−∥L∥)2 ,                                               (2.20)

ε is the probable error.
It is clear that the number of chains,  N,  and the length of chain,  T,  are independent of

matrix size n, and they only depends on the matrix norm and precision. In simulation, we can
use the norm of row ||Li|| to replace norm ||L||∞ for reducing N, and the length of the chain can be
dynamically controlled via the truncation error δ.

3.Implementation and Optimizations

In this section, we will present details of how to use MCMs to solve linear equations on
GPU along with some optimizations we make.
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3.1 MCMs on GPU for solving SLAE

From the above analysis, we notice that the calculation processes of different variables are
irrelevant.  By making use of this property, we can simply obtain a parallel version that each
thread solve one individual unknown. This approach is rough, but it works if there are more than
one unknown. However, in many scientific and engineering problems, though the size of the
problem is large, we only need to know values of few unknowns, especially only one. In such
cases,  this  approach  acts  almost  like  a  single  threaded  process,  which  doesn’t  utilize  the
parallelism provided by GPU. As a result,  a better approach with fine granularity is deserved.

Thinking about the implementation of MCMs for solving SLAE on CPU [3], we find that
the job done by the first loop is simple: just iterate through each Sobol point and simulate a
Markov chain, and different chains don’t affect each other. This nature can be used to find the
parallel algorithm with better granularity. We can partition this loop into multiple warps within
each of them executed by one thread. Then we get the following parallel algorithm (which is a
kernel function in CUDA terminologies) in Figure1.

Algorithm MCMs_GPU
Input:
1. n: the order of the linear equations;
2. P: the n*n probability transition matrix;
3. B: the n*n associated matrix;
4. m: the number of Sobol points;
5. d: the dimension of each Sobol point;
6. Sobol: m*d Sobol points matrix;
7. f: the iterative vector of size n;
8. Idx: the index of the unknown which we want to solve.
Output:
1. partial_x: one part of the value of the unknown (corresponding to one
block).
1. tid←the current thread id
2.       num_thread←the number of threads within a grid
3. ◇x_array is an array whose size is equal to the size of one block.
4.       x_array[tid]←0
5.       i←1
6. while i<m
7.          do state←Idx
8.              w←1
9.              e←f[state]
10.               for j←1 to d
11.                 do p←Sobol[j]

12.                     next_state←the smallest k such that ∑
i=1

k

P {state }{k }≥ p

13.                     w←w*B[state][next_state]
14.                     e←e+w*f[next_state]
15.                     state←next_state
16.              x_array[tid]←x_array[tid]+e
17.              i←i+num_thread
18. ◇Synchronize the threads in one block.
19. SynchronizeTheads()
20.       partial_x←ParallelPrefixSum(x_array[tid])
21. return partial_x

Figure1: Monte Carlo Algorithm on GPU
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In the description of the algorithm, we use the Sobol sequences to simulate random walks.
The process MC_GPU is executed by num_thread threads simultaneously, and the threads are
organized as multiple blocks, with one block containing multiple threads. Each thread calculates
one part of the answer of one unknown and stores the result to x_array[tid]. Since the threads
within  one  block  cannot  communicate  with  the  threads  in  other  blocks,  the  array variable
x_array is a local variable to each block.  Upon completion of  the simulation of Markov chain,
we  need  to  synchronize  the  threads  in  one  block  (line  19),  and  then  invoke  subroutine
ParallelPrefixSum to sum up the values in one block and return the result.

Note that this routine only calculates one part of the result  of one unknown. After the
execution,  we  obtain  multiple  “partial_x”  (one  for  each  block),  so  we  need  to  invoke
ParallelPrefixSum again to sum up all these values, and divide the sum by the number of Sobol
points to get the final answer. The ParallelPrefixSum routine can be implemented in O(log(n))
time, where n is the size of the input array [12].

3.2 Optimizations

Given the above approach,  several  optimizations  can be made  in  respect  to  both data
structure and hardware environment. First of all, since x_array is a local variable to one block,
we can define it as share memory instead of global memory in the CUDA C environment to
accelerate the memory access speed. Secondly, in general cases, the size of the matrix n is large,
while the matrix itself is sparse. In such situations, we can use sparse representation of matrix to
reduce the memory usage by a large factor. Moreover, we notice that all values in the same row
of matrix B are the same except the sign. We then can use only one bit to represent the sign, and
allocate an array of size n to store the absolute values of the n row. 

3.3 Task Partition

The  task  partition  is  a  very  important  aspect  of  the  GPU  computation  performance.
Different partition strategies vary the performance greatly. According to former study, when the
number of blocks is several times as many as the number of multiprocessors, it can achieve
better occupancy and performance [13]. The reason why there should be multiple active blocks
per  multiprocessor  is that  blocks  aren’t  waiting  for  a  __syncthreads()  which  can  keep  the
hardware  busy.  Additional  factors  include  the  register  availability  and  the  block  size  [14].
Because of these reasons, we make the size of each block a multiple of Max_threads, which is a
factor of both the maximum number of threads per multiprocessor and the maximum number of
threads  per  block.  We  also  make  the  number  of  blocks  a  multiple  of  the  number  of
multiprocessors, and 3 or 4 is enough according to the procedure of MC_GPU (because only
one __syncthreads() is invoked).

4.Numerical Experiment

In this section, we present two numerical tests and show the test result. In the first test, we
go to figure out the efficiency of random numbers on GPU. Then we make a test based on the
algorithm described in  the  previous section with optimal  random numbers.  It  compares  the
computing time of MCMs on GPU with CPU, and we expect to see a large acceleration factor.
In our experiment environment, the CPU is  Intel(R) Xeon E5620 and GPU is Nvidia C2050.
E5620 has 4 cores and C2050 has 14 SMs, where each SM has 32 cores, 448 cores totally.

4.1 Efficiency of Random Numbers on GPU

We  will use some numerical test to analyze the efficiency of random walks and quasi-
random walks  solving SLAE on GPU from accuracy,  convergence rate and solving rate  on
GPU.  We  choose  MTGP32  generator  to  generate  pseudo  random walks  in  random walks
simulation  [13]. Then in  quasi-random walks  simulation,  we  use  Halton,  Faure  and  Sobol
sequences [4].

From Fig.2 we can know that the difference of accuracy of two methods is not obvious,
quasi-random walks are a little better than random walks, also learn that the convergence rate of
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quasi-random walks are faster than random walks, consistent with previous theory. However,
the gap of solving rate is huge between two methods,  Fig.3 and  Fig.4 tells us the gap steadies
with the increasing computations where the the problem is dense condition and sparse conditon
respectively.  The  reason  is  that  when  the  random walks  requirement  grows,  more  random
numbers  are needed; in  the random walks computing process,  pseudo random numbers  are
newly generated in  the  new components, but  the  quasi-random walks just only generate the
quasi sequence once for all components computing. Although non-zero numbers increasing with
the size of problems, more computations are needed in simulating random walks, the advantages
of saving computations of generating random numbers cannot be counteracted. Moreover, the
quasi-random walks have higher convergence rate. 

Figure2: Accuracy of Random Numbers            Figure3: Computing Time of Random Numbers

 

Figure4: Computing Time of  Random              Figure5: Accelerated Ratio of the Two 
Numbers                                                              Algorithms      

4.2 Running Time of  MCMs_CPU and MCMs_GPU

In this test, we do experiments with vary sizes of problems.  In all  testings, we use the
Sobol sequences. When running MCMs on GPU, we set the number of blocks per grid as 84 and
the number of threads per block as 512, so that most of the threads run through only one Sobol
point. We record the computing time and plot the result in Fig.5.

As we can see in Fig.5, the computing time on CPU is increasing logarithmically along
with the problem size roughly because the complexity of MCMs_CPU is O(m*d*log(X)), where
m(the number of random walks) and d(the length of random walks) are fixed, and X is sparse
ratio. There are some outliers on the curve before average each point with the 10X running, but
they don’t affect the shape of the curve a lot. These outliers may be generated due to the shape
of the random matrix or CPU scheduling.

For the runtime on GPU, the curve is much smoother,  although it is still a logarithmical
growth theoretically. The reason may be that the GPU is only scheduled for at most one job at
any time and is idle for most of the time.  Learn from results that the average speed-up ratio can
be above 50X.

5. Conclusion
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Solving SLAE is an important issue in  the scientific computing field. In this paper, we
study on  MCMs for  solving  SLAE.  We  propose  an  GPU version  MCMs to  accelerate  the
computation of solving SLAE problem. We make some optimizations for the MCMs to fit GPU
architecture  and  CUDA programming  model.  In  the  implementation,  we  use  compression
technique to store probability transition matrix and associated matrix  to reduce the memory
demand. Furthermore, we design variables storage strategy according to GPU specific memory
architecture to speed up computing. Moreover, we set a suitable number of threads in a grid and
grids to hide the delay sufficiently. Then through simulating some kind of random numbers on
GPU to solve SLAE, we find that quasi-random walks have a better performance than random
walks. The performance of numerical  experiments demonstrates that  GPU can  speed up the
computing remarkable. The accelerated ratio increases with the scale of problem increasing. 
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