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combined eigenvalue and eigenvector placement methods given in Moore. The state feedback
matrix F can control the system’s overshooting. The decay rate of non-overshooting controller
can  be  arbitrary and  only be  determined  by the  expected  eigenvalues.  Finally,  a  numerical
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1. Introduction

Many high  precision  control  systems  are  applied  in  the  manufacture  and  production
process. Overshooting is one of the most dynamic time domain indexes about designing the
control  systems.  In  the  complex  process  of  manufacturing,  like  high  speed  lathe  feeding
controller,  the aircraft climb and drop section and design of the self-controlled robot are all
requiring the system to produce non-overshooting state-feedback as far as possible with step
response[1][2]. Its  significance  aimed  at  reducing  the  damage  to  the  productionby a  wide
margin. In recent decades, many scholars have researched  the overshooting of the systems.
Chen and Hong considered using the backward method to research the necessary and sufficient
conditions of the non-overshooting control rate of system’s order less than four about strictly
proper integer order nonlinear system[3]. Gyurkovics and Takacs provided some conditions by
formulated in some matris ineaualities to constraint the continuous and discrete timing systems,
but their research was confined to nonlinear constraint elements and paid no attention to the
linear elements[4].  Nguyen and Leonessa considered three components reling on the feedback
lows: a predictor, a reference model and a controller. The designed of feedback control lows
forecasted   the  output  to  the  MIMO linear  system[5].  Geromel  and Souza  figured  out  the
nonuniform data rates and testified the stability of the performance to the closed loop system by
designing a special teo points boundary value[6]. Kulkarni, Purwar and Sharma considered a
controller  consisted  of  non-linear  and  linear  elements  for  TRMS and  guaranteed  minimum
settling time with nonovershooting to response[7]. Formerly, scholars studied the state feedback
controller which was limited to the low order real number system and the nonlinear system. In
this article, we expand the domain of the controller to the fractional order.

The  overshoot  of  step  response  relates  to  the  zero  pole  of  system.  Accordingly,  the
feedback low designed by the combined eigenvalue and eigenvector placement methods given
in Moore[8]. Let LMI system for continuous time  obtain a non-overshoot reference input under
any initial conditions by using linear state feedback controller. This article aims at designing a
non-overshooting  state-feedback  controller  for  the  fractional  derivative  MIMO system.  The
problem of non-overshooting tracking for a class of fractional order linear time invariant MIMO
systems  is  considered.  The  state  feedback  controller  based  on  this  method  can  make  the
reference input without overshoot. The decadent rates of the non-overshooting controller can be
arbitrary values and only determined by the expectant eigenvalues. Finally, the validity of the
method is explained by the digital simulation.

2. Problem Formulation

Definition.2.1[9]. Define integral and order m differentiable function f(t) as α(α<0) order
Caputo fractional order derivative:

                                   Dα f (t)=
1

Γ(m−α)
∫t0

t f (m )
(τ)

( t−τ)
α+1−m d τ         

                                 (2.1)
for m is integer and m-1<α<m, Γ(*) is an Euler-Gammar function，f(m)(*) express m order

derivative of function f(*).
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Definition  2.2.  Define  Mittag-Leffler function as: Eα ,β(z )=∑
k=0

∞ z k

Γ(αk+β)
for

α>0, β>0.
Consider the commensurate fractional order LTI system Σ be governed by:

                        Σ :{ Dα x (t)=Ax (t )+Bu (t)
y (t)=Cx(t)+Du(t ) , x (0)= x0∈Rn       

                                  (2.2)

where for 0<α<1, t T∈ , x(t) R ∈  is the state vector, u(t) R∈  is the control input, y(t) R∈  is 
the output, constant matrix A, B, C, D are the system matrix. The paper aims at designing a class
of state feedback control laws for linear time invariant systems which can be used to ensure that 
the output y(t) R ∈ of the system without overshoot for any step response r R ∈ and adjoined zero
stability. As such, make the following assumption.

Assumption 2.1. System Σ is stable and invertible and has no invariant zero at the origin.

B isfull column rank and C is full column rank.

Lemma 2.1[10][11]. Let A be a real matrix.The necessary and sufficient conditions to 

the asymptotic stability of 
d α x (t)

d tα = A x( t) is

                                                 ∣arg (spec(A))∣>απ
2

                                                    

 (2.3)

where, spec(A) is the domain of all eigenvalues of matrix A.

According o Lemma 2.1, nonovershooting tracking controller about step response r 

designed by eigenvalue and eigenvector placementmethods. Let ∣arg (spec (A))∣>απ
2

, 

obtaina feedback gain matrix F and existence vector x
S  

,u
S
satisfied:

                                                         0=Ax s+Bus                                                             (2.4)
                                                r=Cx s+Du s                                                           (2.5)

Construct a state feedback control low:

                                        u (t)=F (x (t )−x s)+us                                                    (2.6) 

Homogeneous closed-loop system obtained from (2.2) and ζ(t):=x(t)-x
S
 :

                       Σ hom :{ Dαξ ( t)=( A+BF )ξ (t )
y (t)=(C+D)ξ (t )+r ,ξ (0)=ξ 0= x0−xs ∈Rn           (2.7)

Cause ∣( A+BF )∣>α π
2

state variable x(t) tends to x
S
 and output y(t) tends to r when t 

tending to infinity. The output y obtained a tracking error ε(t)=r-y from x
0
 which satisfied:

(i) t→∞, ε(t)=r-y →∞。

(ii) For anyinitial conditions x
0
 and step response r, ε(t) is stable.
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        From the above, system Σ has a non-overshooting step response from initial condition x
0 
 to

r. It clears that Σ has a globally non-overshooting response for if r the output y is non-overshoot
for all initial conditions x

0
.

Lemma 2.2. Let λ= λ﹛
1 
,λ

2 
,...,λ 

n
b﹜ e a self-conjugate set of n distinct complex numbers.

Let s= s﹛
1 
,s

2 
,...,s

n﹜
be a set of  n vectors in RP.

Assumption 2.2. For i 1,2,...,n∈﹛ ﹜, the matrix equation:

                                              [
A−λ i I n B

C D
][

v i

W i

]=[
0
si

]                                                 (2.8)

Has solution set V= v﹛
1 
,v

2 
,...,v

n
﹜ C ∈ and ∈W= w﹛

1 
,w

2 
,...,w

n
﹜∈C. Then, provided v is

linearly independent, an unique real feedback matrix F=WV-1 exits, such that i 1,2,...,n ,∈﹛ ﹜
                                                      (A+BF )vi=λ i v i                                                       (2.9)

                                                       (C+DF )v i=s i                                                     (2.10)

3. Design of the Feedback Controller for Square Systems

3.1 System Σ has at the least n-p distinct invariant zeros.

Assumption 3.1. System Σ here we considered is the square (p=q).
Assumption 3.2.  System Σ has at least  n-p  distinct invariant zeroes lying in the region:

∣arg (A+BF )∣>απ
2

. 

Let  λ=﹛λ
1  

,λ
2  

,...,λ
n
﹜be a  self-conjugate  set  of  independent  steady-state  closed-loop

eigenvalues of matrix A+BF and z﹛
1  

,z
2  

,...,z
n-p
﹜be n-p independent stable zeroes of system Σ.

Let λ
i
=Z

i
, i 1,2,...,n-p∈﹛ ﹜, for i n-p+1,...,n∈﹛ ﹜, independent eigenvalue λ

i  
can be optional

selected from C
s
 and differ in the invariant zeroes of system Σ.

Remark 3.1.  As the plural invariant zero exists in pairs, in order to ensure λ that
shall belong to the self-conjuga te set, for i n-p+1,...,n∈﹛ ﹜:

(i) Eigenvalues λ
i  

located  at  arbitrary  position  in  the  open  left  half  part  of  the

complex plane.
(ii) Select eigenvalues λ

i  
arbitrarily existing in pairs while it`s plural.

Let e﹛
1 
,e

2 
,...,e

P
﹜be the canonical base of RP, s= s﹛

1 
,s

2 
,...,s

n﹜
as:

                                                      s={
0,i ∈{1,2,... , p}
e1, i=n− p+1

.

.

.
e p ,i=n

                                                  (3.1)

V= v﹛
1 
,v

2 
,...,v

n
and﹜  W= w﹛

1 
,w

2 
,...,w

n
﹜obtained by λ

i 
selected from (2.8), for 

i 1,2,...,n∈﹛ ﹜.
According to Lemma2.1, if V is linear independent, state feedback gain matrix 

F=WV-1 can ensure the stability of the closed-loop system. V satisfies:
                                  (A+BF )vi=λ i v i , i ∈{1,2,. .. , n }                                   (3.2)

                           (C+DF)w i={ 0 i ∈{1,2,... , n}
e i−(n− p) i∈{n− p+1,. .. , n}

                           (3.3)

Theory 3.1.  System Σ satisfies  Assumption 2.1, 3.1 and 3.2. Let  L be expected closed-
loop  pole  set,  and  associated  eigenvector  set  V  obtained  from  (2.8) which  is  linear  and
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independent. Let  r be step response and x
0 
be initial condition. Matrix F is obtained by Moore

arithmetic. The output  y(t) obtained by u(t) from (2.6) to system Σ is non-overshooting.
Proof: Homogeneous system Σ

hom 
 in (2.7) obtained from which the state feedback control

low  (2.6) applying to system  Σ.  For any initial  condition  ζ
0
=x

0
-x

S  
and step response  r ,  the

tracking error   ε(t)=r-y is obtained by:
                                         ε (t)=(C+DF )ξ 0 Eα[( A+BF ) tα ]                                      (3.4)

According toeigenvalue of matrix (A+BF) is independent that:

                                    Λ=V −1( A+BF )V=diag(λ1 , λ2 , ... ,λn)                                (3.5)

so

Eα ,1[( A+BF )tα
]=∑

k =0

∞ [V ΛV −1tα]
k

Γ(k α+1)
=V [∑

k=0

∞ [Λ tα
]k

Γ(k α+1)
]V −1=VEα , 1(Λ tα

)V −1       (3.6)

for

                          Eα ,1=diag [Eα ,1(λ1tα) , Eα ,1(λ2 tα) ,... , Eα , 1(λn tα)]                    (3.7)

According to (13-16) , the tracking error obtained by δ:=[δ
1 
,δ

2 
,...,δ

n
]T=V-1ζ

0 
is given by

                                  ε (t)=(C+DF )VEα ,1[ Λ tα
]V−1ξ 0

                                         = ∑
i=n− p+1

n

e i−(n− p )δ Eα ,1[λ t t
α ]=[

δ n− p+1 Eα ,1(λn− p+1tα
)

...
δ n Eα ,1(λn tα

) ]
(3.8)

From that, every part of p of ε(t) only contains one modality:ε(t)
i
=δ

n-p+1
Ε

α,1
[λ

n-p+1
tα]. System

Σ
hom 

tends to be stable gradually when all eigenvalues are included to C
S
 and t→∞, ε(t)→0. For i

n-p+1,...,n∈﹛ ﹜, λ
i 
is determined and Ε

α,1
[λ

i
tα] do not change the sign.  ε(t) doesn’t change sign

in any part and output y is non-overshooting to step response r.

4. Example

Let system Σ
1
 as fractional order linear invariant system and α=0.9.

Σ 1 :{D0.9 x (t)=[
−9 −9 5 0 −3
−8 0 0 −7 0
−10 0 8 −5 0
−10 0 8 −5 0

1 0 0 0 −7
] x( t)+[

0 0
6 0
9 0
2 −10
0 0

]u(t) , x (0)= x0∈Rn

y (t)=[10 0 0 0 −1
0 0 0 −1 −4] x (t)+[1 2

0 −1]u(t )

(4.1)

Assume that tracking response as [5 -5]T. It’s clear that system Σ
1
 has five invariant zeroes

at  14.4207±3.0814i,  -17.1802+11.9843i,  -6.4809.  Exists  n-p=3  stable invariant  zeroes in the

domain of C
S
. Choose  -17.1802+11.9843i, -6.4809 as closed-loop system eigenvalues. The last

eigenvalues can be selected from any real number in the open and left half part complex plane. 
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According to Lemma2.1, state feedback gain matrix F given by choosing -8 and -10:

F=[ 1.3942 −8.8883 3.1104 2.7451 −3.2564
−0.4510 −2.1672 1.2501 1.2996 −0.06328]             (4.2)

Figure 1 : Simulation
Let system Σ

1
 as fractional order linear invariant system and α=0.7.

Figure 2 : Simulation

By comparing  the simulation obtained that the difference of  decadent rates to the non-
overshooting controller by different values of the alpha.

5. Conclution

      The state feedback gain matrix  F obtained by eigenvalue and eigenvector placement
methods can make the step response which is non-overshooting to the linear system and verify
its  correctness  by Matlab simulation.  It  can be used as  a new method to study the system
without overshoot in the control of the state feedback control. The design of the controller can
be  applied  to  a  square  linear  time  invariant  system with  continuous  time.  The  appropriate
feedback gain matrix F satisfying the state feedback controller can be obtained by using Moore
algorithm. The controller make for the linear system can be used under any initial condition to
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obtain a non-overshooting input. If the design can be applied to the manufacturing industry,
itwill greatly reduce the product damage.
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