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1. Introduction

Central production in proton-proton collisions has been studied in the energy range from the
ISR at CERN up to the presently highest LHC energies [1]. Ongoing data analysis include data
taken by the COMPASS collaboration at the SPS [2], the CDF collaboration at the TEVATRON [3],
the STAR collaboration at RHIC [4], and the ALICE and LHCb collaborations at the LHC [5, 6].
The analysis of events recorded by the large and complex detector systems requires the simulation
of such events to study the experimental acceptance and efficiency. Much larger data samples are
expected in the next few years both at RHIC and at the LHC allowing the study of differential
distributions with much improved statistics. The purpose of the ongoing work presented here is the
formulation of a Regge pole model for simulating such differential distributions.

2. Central production

The study of central production in hadron-hadron collisions is interesting for a variety of rea-
sons. Such events are characterized by a hadronic system formed at mid-rapidity, and by the two
very forward scattered protons, or remnants thereof. The rapidity gap between the mid-rapidity
system and the forward scattered proton is a distinctive feature of such events. Central production
events can hence be tagged by measuring the forward scattered protons and/or by identifying the
existence of rapidity gaps. Central production is dominated at high energies by Pomeron-Pomeron
exchange. The hadronization of this gluon-dominated environment is expected to produce with
increased probability gluon-rich states, glueballs and hybrids. Of particular interest are states of
exotic nature, such as tetra-quark (qq̄ + q̄q) configurations, or gluonic hybrids (qq̄+gluon).

3. Central production event topologies

The production of central events can take place with the protons remaining in the ground state,
or with diffractive excitation of one or both of the outgoing protons.

Figure 1: Central production event topologies.

The topologies of central production are shown in Fig. 1. This figure shows central produc-
tion with the two protons in the ground state on the left, and with one and both protons getting
diffractively excited in the middle and on the right, respectively. These reactions take place by the
exchange of Regge trajectories α(t1) and α(t2) in the central region where a system of mass Mx

is produced. The total energy s of the reaction is shared by the subenergies s1 and s2 associated to
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the trajectories α(t1) and α(t2), respectively. The LHC energies of
√

s = 8 and 13 TeV are large
enough to provide Pomeron dominance. Reggeon exchanges can hence be neglected which was
not the case at the energies of previous accelerators.

The main interest in the study presented here is the central part of the diagrams shown in
Fig. 1, i.e. Pomeron-Pomeron (PP) scattering producing mesonic states of mass Mx. We isolate
the Pomeron-Pomeron-meson vertex and calculate the PP total cross section as a function of the
centrally produced system of mass Mx. The emphasis here is the behaviour in the low mass res-
onance region where perturbative QCD approaches are not applicable. Instead, similar to [7], we
use the pole decomposition of a dual amplitude with relevant direct-channel trajectories α(M2) for
fixed values of Pomeron virtualities, t1 = t2 = const. Due to Regge factorization, the calculated
Pomeron-Pomeron cross section is part of the measurable proton-proton cross section [8].

4. Dual resonance model of Pomeron-Pomeron scattering

Most of the existing studies on diffraction dissociation, single, double and central, are done
within the framework of the triple Reggeon approach. This formalism is useful beyond the res-
onance region, but is not valid for the low mass region which is dominated by resonances. A
formalism to account for production of resonances was formulated in Ref. [9]. This formalism is
based on the idea of duality with a limited number of resonances represented by nonlinear Regge
trajectories.

Unitarity Veneziano
duality

Figure 2: Connection, through unitarity (generalized optical theorem) and Veneziano-duality, between the
Pomeron-Pomeron cross section and the sum of direct-channel resonances.

The motivation of this approach consists of using dual amplitudes with Mandelstam analyticity
(DAMA), and is shown in Fig. 2. For s→ ∞ and fixed t it is Regge-behaved. Contrary to the
Veneziano model, DAMA not only allows for, but rather requires the use of nonlinear complex
trajectories which provide the resonance widths via the imaginary part of the trajectory. A finite
number of resonances is produced for limited real part of the trajectory.

For our study of central production, the direct-channel pole decomposition of the dual ampli-
tude A(M2

X , t) is relevant. This amplitude receives contributions from different trajectories αi(M2
X),

with αi(M2
X) a nonlinear, complex Regge trajectory in the Pomeron-Pomeron system,

A(M2
X , t) = a ∑

i= f ,P
∑
J

[ fi(t)]J+2

J−αi(M2
X)

. (4.1)

The pole decomposition of the dual amplitude A(M2
X , t) is shown in Eq. (4.1), with t the

squared momentum transfer in the PP→ PP reaction. The index i sums over the trajectories which
contribute to the amplitude. Within each trajectory, the second sum extends over the bound states
of spin J. The prefactor a in Eq. (4.1) is of numerical value a = 1 GeV−2 = 0.389 mb.
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The imaginary part of the amplitude A(M2
X , t) given in Eq. (4.1) is defined by

ℑmA(M2
X , t) = a ∑

i= f ,P
∑
J

[ fi(t)]J+2ℑmαi(M2
X)

(J−Reαi(M2
X))

2 +(ℑmαi(M2
X))

2 . (4.2)

For the PP total cross section we use the norm

σ
PP
t (M2

X) = ℑm A(M2
X , t = 0). (4.3)

The Pomeron-Pomeron channel, PP→ M2
X , couples to the Pomeron and f channels due to

quantum number conservation. For calculating the PP cross section, we therefore take into account
the trajectories associated to the f0(980) and to the f2(1270) resonance, and the Pomeron trajectory.

5. Non-linear, complex meson Regge trajectories

Analytic models of Regge trajectories need to derive the imaginary part of the trajectory from
the almost linearly increasing real part. We relate the nearly linear real part of the meson trajectory
to its imaginary part by following Ref. [10],

ℜe α(s) = α(0)+
s
π

PV
∫

∞

0
ds
′ ℑm α(s

′
)

s′(s′− s)
. (5.1)

In Eq. 5.1, the dispersion relation connecting the real and imaginary part is shown. The
imaginary part of the trajectory is related to the decay width by

Γ(MR) =
ℑm α(M2

R)

α
′ MR

. (5.2)

6. The Regge trajectories

Apart from the Pomeron trajectory, the direct-channel f trajectory is essential in the PP system.
Guided by conservation of quantum numbers, we include two f trajectories, labeled f1 and f2, with
mesons lying on these trajectories as specified in Table 1.

IG JPC traj. M (GeV) M2 (GeV2) Γ (GeV)
f0(980) 0+ 0++ f1 0.990±0.020 0.980±0.040 0.070± 0.030
f1(1420) 0+ 1++ f1 1.426±0.001 2.035±0.003 0.055± 0.003
f2(1810) 0+ 2++ f1 1.815±0.012 3.294±0.044 0.197± 0.022
f4(2300) 0+ 4++ f1 2.320±0.060 5.382±0.278 0.250± 0.080
f2(1270) 0+ 2++ f2 1.275±0.001 1.6256±0.003 0.185± 0.003
f4(2050) 0+ 4++ f2 2.018±0.011 4.0723±0.044 0.237± 0.018
f6(2510) 0+ 6++ f2 2.469±0.029 6.096±0.143 0.283± 0.040

Table 1: Parameters of resonances belonging to the f1 and f2 trajectories.

The real and imaginary part of the f1 and f2 trajectories can be derived from the parameters of
the f-resonances listed in Table 1, and has explicitely been derived in Ref. [11].

While ordinary meson trajectories can be fitted both in the resonance and scattering region
corresponding to positive and negative values of the argument, the parameters of the Pomeron
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trajectory can only be determined in the scattering region M2 < 0. A comprehensive fit to high-
energy pp and pp̄ of the nonlinear Pomeron trajectory is discussed in Ref.[8]

αP(M2) = 1.+ ε +α
′
M2− c

√
s0−M2, (6.1)

with ε = 0.08, α
′
= 0.25 GeV−2, s0 the two pion threshold s0 = 4m2

π , and c = α
′
/10 = 0.025.

For consistency with the mesonic trajectories, the linear term in Eq. (6.1) is replaced by a
heavy threshold mimicking linear behaviour in the mass region of interest (M < 5 GeV),

αP(M2) = α0 +α1(2mπ −
√

4m2
π −M2)+α2(

√
M2

H −
√

M2
H −M2), (6.2)

with MH an effective heavy threshold M = 3.5 GeV. The coefficients α0,α1 and α2 are chosen
such that the Pomeron trajectory of Eq. (6.2) has a low energy behaviour as defined by Eq. (6.1).

7. The f0(500) resonance

The experimental data on central exclusive pion-pair production measured at the energies of
the ISR, RHIC, TEVATRON and the LHC collider all show a broad continuum for pair masses
mπ+π− < 1 GeV/c2. The population of this mass region is attributed to the f0(500). This resonance
f0(500) is of prime importance for the understanding of the attractive part of the nucleon-nucleon
interaction, as well as for the mechanism of spontaneous breaking of chiral symmetry. In spite of
the complexity of the f0(500) resonance, and the controversy on its interpretion and description,
we take here the practical but simple-minded approach of a Breit-Wigner resonance [12]

A(M2) = a
−M0Γ

M2−M2
0 + iM0Γ

. (7.1)

The Breit-Wigner amplitude of Eq. (7.1) is used below for calculating the contribution of the
f0(500) resonance to the Pomeron-Pomeron cross section.

8. Pomeron-Pomeron total cross section

The Pomeron-Pomeron cross section is calculated from the imaginary part of the amplitude by
use of the optical theorem

σ
PP
t (M2) = ℑm A(M2, t = 0) = ∑

i= f ,P
∑
J

[ fi(0)]J+2 ℑm αi(M2)

(J−ℜe αi(M2))2 +(ℑm αi(M2))2 . (8.1)

In Eq. (8.1), the index i sums over the trajectories which contribute to the cross section, in our
case the f1, f2 and the Pomeron trajectory discussed above. Within each trajectory, the summation
extends over the bound states of spin J as expressed by the second summation sign. The value
fi(0) = fi(t)

∣∣
t=0 is not known a priori. The analysis of relative strengths of the states of trajectory

i will, however, allow to extract a numerical value for fi(0) from the experimental data.
The Pomeron-Pomeron total cross section is calculated by summing over the contributions

discussed above, and is shown in Fig. 3 by the solid black line. The prominent structures seen in
the total cross section are labeled by the resonances generating the peaks. The model presented here
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Figure 3: Contributions of the f0(500) resonance, the f1, f2 and the Pomeron trajectory, and of the back-
ground to PP total cross section.

does not specify the relative strength of the different contributions shown in Fig. 3. A Partial Wave
Analysis of experimental data on central production events will be able to extract the quantum
numbers of these resonances, and will hence allow to associate each resonance to its trajectory.
The relative strengths of the contributing trajectories need to be taken from the experimental data.
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