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1. Introduction

With the precise measurements of the CMB observables, we can now robustly constrain the

cosmological parameters even in the existence of the cross-correlated isocurvature modes. The

robustness here refers to the fact that the parameter estimations do not significantly change the best-

fit conventional ΛCDM parameters even after including the cross-correlations which can induce

the degeneracies among cosmological parameters. The WMAP for instance suffered from the big

degeneracies in including the isocurvature perturbations, and we needed to wait for the Planck to

robustly constrain the cosmological parameters when the isocurvature perturbations have the non-

trivial cross correlations with the curvature perturbations. It would hence be worth exploring now

the inflation scenarios where such cross-correlated isocurvature perturbations arise. We first show

how precisely the forthcoming CMB experiments can potentially constrain the cross-correlated

isocurvature modes [1]. We then present how the cross-correlated isocurvature perturbations can

arise in the axion inflation scenarios as concrete examples, where we also illustrate how the cross-

correlations can help in distinguishing different inflation scenarios [2].

2. CMB probes on correlated isocurvature perturbations

We first show how much the cosmological parameter estimations can be affected by the cross-

correlated isocurvature perturbations. We performed the Fisher matrix analysis for forecasting

the bounds on the cosmological parameters assuming a Planck-like CMB satellite experiment.

The CMB observables (T,E,L) of our interest are, respectively, the CMB temperature, E-mode

polarization and the CMB deflection angle representing the CMB lensing [3].

For our parameter estimations, we define the power spectra of the curvature, isocurvature and

their cross-correlation, denoted by subscripts R, I and C respectively, as

PX = AX(k0)

(

k

k0

)nX−1

, (2.1)

with X ⊃ (R, I,C), and the fractions of the isocurvature perturbation and cross-correlation are de-

fined as

βI =
PI

PR

, βC =
PC√
PRPI

(2.2)

The total power spectrum which we observe is the sum of PR,PI and PC. Unless stated otherwise,

A’s and β ’s are evaluated at the reference scale k0 = 0.05 Mpc−1 and the isocurvature fraction is

set to βI = 0.04 (which corresponds to 95% CL upper bound from Planck+WMAP [4] when there

is no correlation between the curvature and isocurvature perturbations) in the following analysis.

The Fisher matrix consists of 9 parameters, (AI ,AC,nI) in addition to the conventional six

ΛCDM parameters (ΩΛ = 0.69, Ωmh2 = 0.14, Ωbh2 = 0.022, nR = 0.96, AR = 2.2×10−9, τ (reion-

ization optical depth)= 0.095) with the numerical values being the fiducial values in our Fisher

analysis [5]. The spectral index of the cross-correlation is set to nC = (nR + nI)/2 for simplicity,

which is indeed realized in and motivated from our axion scenarios to be discussed in the next sec-

tion. The marginalized errors for the parameters involving the isocurvature perturbation are listed

in Table 1 for different cross-correlation power spectrum amplitudes. We find that βC ≤ O(0.1) is
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T T E T L Joint

βC = 1

σ(AC)/AC 52 3.8 7.6 3.8

σ(AI)/AI 52 12 30 12

σ(nI)/nI 11 4.3 6.7 4.2

βC = 0.1

σ(AC)/AC 98 24 55 23

σ(AI)/AI 67 13 31 13

σ(nI)/nI 17 6.1 9.9 6.0

βC = 0.01

σ(AC)/AC 600 230 540 220

σ(AI)/AI 70 13 32 13

σ(nI)/nI 18 6.4 11 6.3

Table 1: 1σ errors [%] for different values of βC. T refers to the analysis using only the CMB temperature

data. T E (T L) refers to the analysis using both temperature and polarization (temperature and lensing)

information. Joint refers to the use of T , E and L.

required for the error on AC not to exceed 100%. We here point out the importance of the CMB

polarization data in the parameter estimation for its breaking the degeneracy among the cosmolog-

ical parameters. It, in particular, breaks the degeneracy between τ and AC which arises because the

power spectrum amplitude is suppressed by the reionization optical depth by a factor ∼ e−2τ . This

is illustrated in Figure 1. We can clearly see the big degeneracy between τ and AC in the temper-

ature data alone, which is broken by adding the polarization data. Polarization is sensitive to the

reionization bump on large scales (ℓ. 10) which can lift the degeneracies concerning τ , resulting

in the improved constraints on AC.
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Figure 1: Marginalized 1σ error contours for τ and AC (for βI = 0.04,βC = 1).

The cosmological parameters are in fact not totally independent from each other, and the exis-

tence of a small cross-correlation power spectrum can well affect the other cosmological parameters

which are tightly constrained by the CMB alone. This is illustrated in Table 2 where the errors are
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ΩΛ Ωmh2 Ωbh2 nR AR τ

βC = 1 1.1 1.1 1.0 1.4 0.82 0.79

βC = 0.01 1.1 1.1 1.0 1.4 0.95 0.93

No correlation 1.0 1.0 1.0 1.1 0.95 0.93

Table 2: Normalized error σ/σno iso. The comparison between the error estimation assuming the isocurva-

ture perturbation (βI = 0.04) and that assuming the ΛCDM with no isocurvature perturbation. All the errors

here are estimated combining all of T , E and L.

normalized to those assuming no isocurvature components. The marginalized errors in this table

are calculated by using the 9×9 Fisher matrix except the last row with no cross-correlation which

uses 8× 8 Fisher matrix without AC. These errors are then divided by those calculated by 6× 6

Fisher matrix in the ΛCDM model. The error in τ is reduced partly because the response of polar-

ization to the isocurvature perturbations is different from that to the adiabatic perturbations. This

as a result also helps in reducing the errors in AR by breaking the τ-AR degeneracy. We can see

that the estimation of some of the ΛCDM parameters can well be affected by O(10)% in existence

of the cross-correlation, and the complete ignorance of the cross-correlation could result in the

misinterpretation of the underlying cosmological model.

3. Axion inflation scenarios with cross-correlated isocurvature perturbations

We now discuss concrete inflation models where the cross-correlated isocurvature perturba-

tions can arise. We discuss here the natural inflation [6] as an example where the inflation is

induced by an axion inflaton field while there exists another axion whose energy density during

inflation is sub-dominant and hence induces the isocurvature perturbations. The cross-correlation

between the curvature and isocurvature perturbations can arise from the interaction term

Vint = Λ4
2

(

1− cos

(

φ

g1

+
χ

g2

))

, (3.1)

where φ and χ represent, respectively, an axion-inflaton and another light axion field. The inflation

is induced from an axion-inflaton potential

Vinf = Λ4
1

(

1− cos
φ

f

)

, (3.2)

with f being the axion decay constant.

For the notational brevity, we in the following define the parameters

σ =
φ

f
, ψ =

φ

g1

, θ =
χ

g2

, (3.3)

so that the total potential can be written as

V = Λ4
1(1− cosσ)+Λ4

2 (1− cos(ψ +θ)) . (3.4)

We hereafter focus on the scenarios where the adiabatic perturbations are dominantly sourced by

the axion-inflaton fluctuation δφ and the additional axion fluctuation δ χ leads to the isocurvature
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perturbations. The cross-correlation between the curvature and isocurvature perturbations can be

obtained, using the in-in formalism [1, 7],

PC = 4.2

(

1

g1g2

)(

Λ2

Λ1

)4(
f

φ0

)2

cos(ψ0 +θ0)
√

PRPI, (3.5)

and Fig. 2 shows the following cross-correlation parameter

βC ≡
PC√
PRPI

∼ 4.2

(

1

g1g2

)(

Λ2

Λ1

)4(
f

φ0

)2

cos(ψ0 +θ0) (3.6)

The subscript 0 represents the background field values during the inflation. In the figure, we vary

the axion decay constant f from 1 to 20 and the e-folding number N from 50 to 60. Here, the

prefactor of φ2
0 is set to be of order 0.001 and the power spectrum of the adiabatic curvature per-

turbations

PR = ASkns−1, (3.7)

is fixed to be AS ≃ H2/(8π2ε) ≃ 2.2× 10−9 with ε ≃ 2/φ2
0 being the slow-roll parameter at the

pivot scale k∗ = 0.05Mpc−1. The high-l (l ≥ 30) T E,EE data turn out to drive the isocurvature

cross-correlation towards a smaller value and disfavor the negative cross-correlations which would

be allowed otherwise with the high-l T T data [8]. We can find that the coefficient c in βC = cφ2
0

has to be of order less than 10−3 to be within 2 sigma and the axion decay constant f is constrained

to the range between 5 and 10.
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Figure 2: PC/
√

PRPI and the adiabatic spectral index ns for the natural inflation model (68 % and 95 % CL

contours are from Planck). PC/
√

PRPI = c×φ2
0 for c = 10−3,5× 10−3 are shown for varying N and f (the

labels are in units of the reduced Planck mass). The anti-correlation cases (for c = −10−3,−5× 10−3) are

also shown with the dotted curves.

The cross-correlation parameter βC is constrained to be −0.1 . βC . 0.3, or, in terms of the

parameters in the potential, to be within

−0.1 . 4.2

(

1

g1g2

)(

Λ4
2

2.2×10−9

)

cos(ψ0 +θ0)
φ2

0

96π2
. 0.3. (3.8)

We can also estimate the fraction of isocurvature perturbations

βiso =
PI

PR +PI

=

PI

PR

1+ PI

PR

, (3.9)
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Figure 3: βiso ≡ PI/(PR +PI) and ns for the natural inflation (68% and 95% CL contours are from Planck).

(βiso,ns) are shown for PI/PR = c/φ2
0 with c = 1,10 for varying f and N.
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Figure 4: PC/
√

PRPI and ns for the axion monodromy inflation (Vinf = µ
4−p
1 φ p) (68 % and 95 % CL contours

are from Planck). PC/
√

PRPC = c×φ2
0 /p2 for c = 0.005 are shown for varying the e-folding number N. The

anti-correlation cases (for c =−0.005) are also shown with the dashed lines.

where the power spectrum of the adiabatic perturbation is fixed as in Eq. (3.7), whereas the power

spectrum of the isocurvature perturbation is given by

PI ≈
(

Ωa

Ωm

)2(
1

2π

)2(
2

g1θ0

)2
Λ4

1

6

(

φ2
0

f 2

)

=

(

Ωa

Ωm

)2(
1

g1θ0

)2
16AS

φ2
0

. (3.10)

Then, the fraction of isocurvature perturbations

PI

PR

≈ 16

(

Ωa

Ωm

)2(
1

g1θ0

)2

φ−2
0 , (3.11)

can give a sizable contribution to the cosmological observables as illustrated in Fig. 3 where the

prefactor of φ−2
0 in Eq. (3.11) is set to 1 and 10 for a varying f . The Planck bounds the uncorrelated

axion isocurvature mode to βiso . 0.038, whereas the inclusion of isocurvature cross-correlation

results in the constraint 0.034 . βiso . 0.28 at the 95% confidence level [8].

It is straightforward to perform an analogous analysis for the more general cases such as the

axion monodromy inflation scenarios [9, 10]

V = µ4−p
1 φ p +µ4

2 cos

(

φ

g1

+
χ

g2

)

, (3.12)
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for which the natural inflation is a special case with p = 2. For such axion monodromy inflation

scenarios, we can obtain

βC =
PC√
PRPI

= 2.1

(

1

g1g2

)(

µ4
2

12π2AS

)

cos(ψ0 +θ0)

(

φ0

p

)2

, (3.13)

PI

PR

≈
(

Ωa

Ωm

)2(
2

g1θ0

)2(
p

φ0

)2

. (3.14)

The cross-correlation parameter is shown in Fig. 4, and we can see that, for the axion mon-

odromy inflation with p= 1,2/3 including the sinusoidal corrections inducing the non-trivial cross-

correlations, there is a preference for the existence of cross-correlated isocurvature modes in the

currently available CMB data.

We discussed in this presentation the forecasts for the CMB sensitivity on the scale dependent

cross-correlated isocurvature perturbations which are generically expected in existence of the ubiq-

uitous scalar fields in the early Universe. We, for concreteness, illustrated the phenomenology of

the scale dependent cross-correlation power spectrum for the axion inflation scenarios. The cross

correlation spectra can affect the preferable inflationary parameter regions to be consistent with the

observables such as the CMB data, and they can give us the useful insight on the early universe

dynamics where there presumably existed many light degrees of freedom inducing the non-trivial

cross correlations among their fluctuations.
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