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1. Introduction

Computational models have large potential for furthering our understanding of interaction be-
tween human and environment as a factor in various social and historical phenomena [1]. One such
approach are agent-based models (ABM) that provide useful model paradigm for human behavior
[2]. When coupled with geospatial data, such models can be spatially explicit, and have variety of
applications in computational social science [3].

The ORBIS project [4] provides a geospatial network model of travel in the Roman Empire.
It combines the road network with maritime transport model derived from historical data, and
provides cost and time expense prediction for given routes. The time and cost predictions take
into account various influential factors, such as seasonal changes, distinguishes coastal and open
sea routes, and onshore means of transport. Currently the online interface enables the researchers
to examine routes between given locations, analyze distance from one location to all others, and
visualize the importance of paths connecting a given location to the rest of the network.

Modelling can be used by historians and archaeologist to explicitly formulate hypothesis about
historical processes, or to fill in the gaps in the sparse archaeological evidence [5] [6] [7]. Agent-
based models provide an attractive framework for formulating dynamic processes such as random
walks, transportation and migration, or trade.

In our case, we want to be able to model agents traveling between the cities of the Roman
Empire on routes defined by the transportation model similar to the one implemented in ORBIS.
As the preferred routes can change depending on season and other external factors, advancing the
model from current average estimates to probabilistic distributions derived from the simulation
will provide with better understanding and robustness to subsequent analysis. The agent-based
approach allows for such probabilistic simulations, and it is a direct extension of the current model.

In this paper we present LINUM: a computational environment for agent-based modelling on
the geospatial transport model.! Tt is designed as a set of scripts and code snippets around the trans-
port model library—rather than one-purpose application, as is the case with ORBIS—to be able to
facilitate exchange and reuse of data and models between different research projects. It enables the
researchers interested in modeling dynamic processes in the context of ancient Mediterranean to
formulate and run their models, while being extensible both in terms of the input geospatial data
and the transport model.

We provide scaffold code to specify the agent-based model, implementation of the transport
model, scripts for construction of the transport model from the geospatial data, and web-based inter-
face to visualize the results of the simulation. We also enable the user to convert the transportation
model to a static network for further analysis by the means of complex network measures. The
functionality of the environment is demonstrated on a model of diffusion process on the transport
network.

2. Preparing input data

The models considered in this paper are built on structured historical evidence. While there
are open data sets available, many researchers improve on them, or create their own to better cover

"https://github.com/i-Zaak/linum
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areas of their interest. The selection and curating of input data is difficult task often requiring
compromising accuracy for generality. Therefore, instead of hard-wiring the transport model, we
provide the researchers with means of constructing it from their own geospatial datasets.
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Figure 1: Overview of the workflow for creating the transport model. LINUM provides tools for the ne-
towork construction step.

The geospatial preprocessing and analysis of the transport network is out of the scope of our
framework. We start with the result of the geospatial analysis in the form of a shapefile—a common
vector file format for geographic information systems [8]. Different ways of transportation can be
included in the model—roads, naval/maritime routes, and river transport. The point geometries
(cities, crossroads) are translated into nodes, and lines into weighted edges discarding the exact
geometric shapes while keeping the distance. For more abstract models, also the crossroads can be
discarded and only edges between cities with shortest direct path can be kept.

Figure 2: Two variants of transport network: left with crossroads, right with expanded crossroads.

Definition of the maritime transport network is more complicated, as the exact routes are
usually unknown. Here we suggest to follow the approach taken by ORBIS, and model the open-
sea and coastal routes between the harbors as shortest paths on a regular grid covering the water
surface. Of course, this approximation can be improved by incorporating knowledge on e.g. sea
streams (influence on speed), shallow water locations (impassable areas), etc. The generation of
the maritime transport network is not yet implemented in LINUM, and will be incorporated in near
future.
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Rivers are also considered as a part of the transport network differing from the roads mainly
in their directional asymmetry: while the travel distance in both directions is the same, upstream
travel is much slower and more costly. We use the same routine as for the roads, and read the
shapefile with river geometry with different constants for travel cost and speed in both directions.

All the above mentioned types of networks are combined in the last step resulting in directed
transport network with edges associated with type and distance. In case of seasonal variability,
particular network is duplicated in its seasonal variants, which then comprise the temporal transport
network as described in next section.

3. Transport model

The transport network changes in time on several time scales. Some connections undergo
seasonal changes—e.g. mountain passes being accessible only in summer—some are created (or
seize to exist) in the course of years. To add the dimension of time to the transport network, we
represent it as a temporal network. In this section we show how the ORBIS transport model can be
constructed around a temporal network, and describe possible extensions.

3.1 Temporal transport networks

In general, the temporal networks allow for time-variable topology, and can be defined in
multiple ways. We will start with the definition of interval graphs from [9]. The interval graph
consists of a set of vertices V, set of edges E, and for every edge e a set of nonempty and non-
overlapping intervals 7, = {(t1,1{),. .., (t,,1,)} giving periods of time, when the edge e is active.
Further, we need to extend this definition with edge weights (e.g. cost, distance, travel time, etc.),
we do so by defining the edge weighting functions w, as piece-wise constant over the time intervals
w, : T, = R. Time-respecting paths between two vertices # and v on such networks (also referred
to as journeys) are timed sequences of edges J(u,v) = {(e171), (€2, 72), ..., (ex, T)} such that the
timings 7; respect the activity intervals of corresponding edges 7; [10].

While the definition above enables us to express the dynamic changes of the network in most
detail, for practical purposes, we will also use (and implement) second variant of definition of
temporal network—Dby multislice graph. Multislice graph is defined as a sequence of graphs G;,
where each slice G; = (V, E;) consists of same set of vertices V and slice-specific edges E; [11]. This
representation is more coarse-grained, and thus simplifies both the computations, and construction
from input data. The latter is important due to uncertainties and low temporal resolution of available
historical evidence.

{(0,3), (5,10}
{0,101}

{(2,7)}
{(3.4), (5,86)}

Figure 3: Two variants of representation of time-resolved network. Left: three time points of a multislice
network. Right: interval graph representing a temporal network.
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As mentioned above, we need to capture two main temporal characteristics of network evolu-
tion: periodic, and aperiodic. The periodically evolving network can be described in much more
compact manner—we only need to write down single period—allowing for efficient modelling of
long time spans. The seasonality of the ORBIS transport model is a good example of such peri-
odic temporal network, in this case the model can be written as four seasonal or 12 monthly slices
implicitly repeating indefinitely. On the other hand, the formalism of temporal networks also al-
lows to express arbitrary aperiodic network evolution, providing a tool to model other than natural
seasonal factors, such as construction of roads, establishing of trade routes, shifting geopolitical
obstacles, and so on.

3.2 Traffic modelling

As we are mainly interested in spreading processes on the transport network, purely random
walks may not be realistic in many cases, as they don’t correspond to real traffic of people and
goods within the network. To do so, we have adapted some of the techniques used in transportation
forecasting to estimate volume of traffic (or intensity of information exchange) between the pairs
of settlements, and the probable routes carrying this traffic. Namely, we use the modified four step
model [12]: trip generation, trip distribution, mode choice, and route assignment.

The trip generation step defines the origins and destinations for the traffic. In our case, it is
trivial—all settlements can be origins and destinations—however with proper historical data, these
could be refined to e.g. reflect trade supply and demand locations.

The trip distribution step defines the frequency with which trips between particular origin and

destination occur. To estimate the frequency 7;; between the nodes i and j, we opt for a gravity law
PP,

T
distance in the transportation network. This approach generates both long-distance trips between

[13] in a form of T;; = where P; and P; are population estimates of the settlements, and d is a
large settlements, and short trips between local small settlements and eliminates the unrealistic
long trips between small settlements. We note, that the population estimates can be hard to obtain
due to incomplete, or imprecise archaeological evidence, however even coarse categorization of
the settlements to classes by orders of magnitude of estimated population should be sufficient.

While we currently don’t implement active choice of mode of transport, this step could be
added if sufficiently backed by historical evidence. The last step—route assignment—differs in our
model from the common traffic forecasting models, because the time-scale of the network changes
is similar to the time-scale of the travel itself, which is obviously not the case today. Because
the globally optimal algorithm is computationally demanding and complex, we have opted for
approximation by the average over shortest paths in all seasons. This estimation will be improved
in future versions of the framework.

The main results of the traffic modelling are twofold: trip distribution table and edge traffic
density. The trip distribution can be used either as first approximation of intensity of communi-
cation between two settlements, or as an input for subsequent agent-based simulations. The edge
traffic density can be used as a weight in subsequent complex network analysis.

4. Analysis and modelling

In this section we describe the agent based models and network analysis approaches we have
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implemented using the transport model.

4.1 Agent based models

The agent-based models can be used on various levels of abstraction. We are mainly interested
in modelling the spreading processes such as diffusion of innovation, so we first focus on agents
performing random walks through the space given by the transport model. Random walk agent uses
the transport model for two purposes: determine neighboring nodes to select next random destina-
tion, and to determine distance to selected destination. Note that due to the temporal character of
the travel network, both these queries depend on time.

Interesting modification of the random walking agents is the addition of destination. Such
agents spawn randomly according to given probability distribution over the settlements and select
a random destination following the probability distribution given by the trip table described in
previous section. The agent then selects the best (shortest, cheapest or fastest) path from the starting
point to the destination. We allow small random diversions from the optimal path to allow the
agents to better explore the space between the starting and end settlements.

While we currently don’t consider any interaction between the agents in our models, the frame-
work supports such behaviour. The agents can query the transport model for presence of other
agents at given settlement.

4.2 Complex network analysis

The topology of the transport network can be quantified with the measures developed for
analysis of spatial complex networks [14]. These measures however work with static network, so
the transport model has to be first reduced in the time dimension. This can be done in several ways,
the most straightforward is to remove the timing information from the edges, and aggregate the
timed weighting function for every edge by e.g. taking minimum or average. This approach results
in network overapproximation as it also includes paths, which don’t correspond to valid journeys
(violates the succession in time), however comparison across aggregation functions allows for at
least partial control of the effect of time reduction.

Some complex network measures are based on the distribution of random walks over the edges
and nodes of the network [15], such as random-walk centrality. These measures can make direct
use of the transport model and the agent-based random walkers. Similarly, measures based on
shortest path lengths—such as betweenness centrality—can be computed from the traces of the
destination-driven walkers. Due to the substantial uncertainties in the input data and assumptions
made in the construction of the model, this may be an interesting way of assessing the robustness
of the results.

5. Computational environment

In this section we describe the architecture of the LINUM modelling environment, and provide
the reasoning behind its design.

The LINUM computational environment consists of four main modules: the transport model,
agent based models, network analysis, and visualization. The transport model component uses
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multislice and temporal networks as a main data structures, and implements functions for comput-
ing shortest, fastest, or cheapest journeys, and queries for node neighbors at a given time. These
functions are used by the ABM and network analysis modules: the former provides the transport
model to the agents as a navigable environment, while the latter uses it to create summarizing static
networks to be studied with established tools for static network analysis. Lastly, the visualization
module provides basic visualization of the results of the simulations and the analysis.

sirmulation and analysis

€| visualiz ation

‘ agent based models ‘

network analysis

transport model

Figure 4: Schema of the components of the LINUM package.

The whole package is designed to be rather an extensible modelling library, than a single
purpose application providing the researchers with enough flexibility for modifying the models and
building their own around the shared transport model. Also, the focus on modelling and analytic
workflows simplifies sharing and reuse of parts of previous studies in followup work or between
otherwise independent research projects. For example the visualization module contains snippets
for visualizing typical scenarios, such as geospatial plotting of the transport network, or visualizing
the results of static network analysis.

As suggested above, the LINUM was designed from start with collaboration and sharing in
mind. In our opinion sharing the implementation of the models and analyses should complement
the ongoing efforts in sharing data [16]. Constructing a model on a level of abstraction as presented
in this paper requires numerous decisions, and even if sincere effort is put into describing the model
in the publication presenting the results, replication on same data set can be tricky if everything has
to be reimplemented. To lower the barrier for code sharing, we have opted to host the LINUM on
GitHub in a hope, that the community will be able to make use of its social networking features to
improve transparency and openness of research [17].

The language of choice for implementation of LINUM is Python for two main reasons: its
accessibility of the language for researchers less experienced in software engineering, and its vast
number of available libraries[18]. In particular, we have used Mesa library [19] to implement the
agent-based models, the network analysis module uses heavily NetworkX package [20], process-
ing of geospatial data is possible with Fiona library,” and the usage examples and visualization are
created as Jupyter notebooks [21]. The form of notebooks is ideal for communicating computa-
tional research on lower levels, as it allows for interweaving the code specifying the model and
visualization of the inputs, intermediate steps, and results.

Lastly, we would like to note on possible opportunities for exploiting parallelism with LINUM.
The models and analyses contain numerous parameters whose influence of the results is expected to
be explored at least to some extent in every serious study. The resulting parameter sweeps are em-

2https://github.com/Toblerity/Fiona
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barrassingly parallel and can efficiently exploit contemporary parallel computational architectures.
As the LINUM package is written in Python 3, we plan to use the in-built multiprocessing module
to implement local SMP parallelism, for distributed computing the master-worker architecture of
the IPython module will be used.

6. Examples of use

In this section, we present the usage of the LINUM framework on two show cases: simple
spreading model, and a random-walk agent simulation. The capabilities of LINUM are shown on
random networks for the sake of simplicity, and all examples can be easily supplied with realistic
networks derived from geospatial analysis.

6.1 Spreading process model

Here we demonstrate the usage of the transport model on a simple spreading process: we
consider a susceptible-infected (SI) model [22] where the nodes can be either susceptible to disease
(or information), or infected. The model starts with small number of infected nodes, and in every
time-step, the infected nodes spread the disease to their neighbors with given probability.

For this demonstration, the network is Watt-Strogatz random small-world network [23]. The
definition of the network model and the SI agents can be found in the si_model . py file in the
repository. The visualization of the initial state, model evolution and summary statistic can be
found in the Jupyter notebook si_network_model.ipnb and on a Figure 5.

IR W | R R .

Once @ Loop ' Reflect

Figure 5: Visualization of a spreading process, from left to right: initial state of the network with infected
nodes colored red, screenshot of the animation widget, plot of the summary statistics.

This show case can serve as a starting place for developing various spreading models. First,
different networks can be supplied during the initialization. Second, the process dynamics can be
defined simply by modifying the Agent . step function, e.g. by adding more states or changing
the dynamics altogether.

6.2 Random walks on the transport model

Next we demonstrate the random-walk agent model using the temporal transport model. The
temporal network consists of four random small-world networks to mimic seasonal changes. Dis-
tance weights on the edges are also set randomly and give number of days needed to cross the edge.
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The length of the season in days is set to 91 so that the model approximates year cycle. 100 agents
are placed randomly in the network nodes with destinations, and starting time offsets also drawn
randomly so that the agents don’t start all in the same time (and same season).

The simulation finishes, when all agents arrive to their destinations, or maximal number of
iterations is taken. The results contain for every time step position of all agents and time in days
passed from the start of the simulation. Path taken by a given agent can be visualized as can be
seen in Figure 6, and in the Jupyter notebook random_walkers. ipnb.

Figure 6: Path through the network taken by destination-driven random walking agent. Visited nodes and
edges are colored red, larger nodes denote starting node and destination.

7. Conclusions and future work

In this paper we have presented computational framework for agent-based modelling on dy-
namic geospatial transportation model. The context of historical research brings unique challenges
for modelling spreading processes on networks, as the time-scales of the evolution of the network
and the process itself are similar.

The package contains implementation of the transport model and supporting scripts for prepar-
ing the inputs, visualizing the results, and examples of usage. It is meant not as a standalone appli-
cation, but as a collection of tools and building blocks for creating transportation network models
based on historical data.

While we have demonstrated the usage of LINUM on simple examples, we plan to apply it in
near future in modelling concrete case studies, such as christianization of the Roman Empire [24].
Simultaneously, we plan to implement the extensions suggested in this paper, such as probabilistic
complex network analysis and systematic parametrization. Lastly, we also plan on creating and
sharing scripts for importing data from relevant databases with archaeological and historiographical
evidence, which are currently being created within digital humanities. We would also like to invite
other researchers to contribute either directly to the code, or by suggesting relevant functionality,
so that the package fits best the needs of the community.
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