PROCEEDINGS

OF SCIENCE

Managing Virtual Appliance Lifecycle in laaS and
PaaS Clouds

Michal Kimle*, Lubomir Kosari§tan, Boris Parak, Zdenék Sustr
CESNET z.5.p. 0.

Zikova 4, 160 00, Praha 6, Czech Republic

E-mail: michal .kimle@cesnet.cz, lubomir.kosaristan@gmail.com,
boris.parak@cesnet.cz, zdenek.sustrl@cesnet.cz

Both the TaaS (Infrastructure as a Service) and PaaS (Platform as a Service) models of provid-
ing cloud services rely on virtual appliances. In popular terms, they are “images” of either bare
operating systems, typically entailing popular Linux distributions, which can be further contex-
tualized once users instantiate their own virtual resources, or operating systems with applications
pre-installed for use in the given platform, which may often consist of a number of complimentary
appliances. Such appliances must be offered to users of any cloud service — they are the basic units
the users see and select from when they decide to procure resources in the cloud. Understandably,
cloud service providers are often expected to offer a variety of appliances. Even in a simple IaaS
scenario, users expect to see a range of OS distributions and flavours. With PaaS, the variety is
even greater. Obviously a range of appliances can be obtained from cloud marketplaces, but that
only offsets rather than solves the problem since the challenges of maintaining their appliances are
the same for local cloud site administrators and marketplace maintainers alike. This, inevitably,
means that cloud site or marketplace administrators must not only offer a selection of appliances,
but also manage them throughout their life cycle, keep them secured and updated, and eventually
discontinue them when the time comes. It is not only cumbersome but also inherently insecure
to leave updates to the user instantiating the given appliance. On top of that, the ability to always
offer “fresh” appliances to its users is a competitive advantage a cloud site may wish to exploit.
This paper introduces a concept of automated periodic appliance updates in a federated cloud
environment, alongside actual tools developed to perform that task. It also sums up up-to-date

experience with operating such tools in the European Grid Initiative’s Federated Cloud.

International Symposium on Grids and Clouds (ISGC) 2016
13— 18 March, 2016
Taipei, Taiwan

*Speaker.

(© Copyright owned by the author(s) under the terms of the Creative Commons
Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0). http://pos.sissa.it/

mailto:michal.kimle@cesnet.cz
mailto:lubomir.kosaristan@gmail.com
mailto:boris.parak@cesnet.cz
mailto:zdenek.sustr@cesnet.cz

Virtual Appliance Lifecycle Management Michal Kimle

1. Introduction

This article introduces a concept of periodic cloud appliance updates and redistribution to
cloud sites integrated into a federated cloud environment, alongside tools that actually implement
such appliance life cycle in the real world. Firstly, Section 2 is going to outline the ground rules
of virtual appliance preparation and maintenance, and introduce COMFY - a tool developed to
automate that task. Then, Section 3 will show what additional tasks must be performed to make
such appliances available within a cloud site, or even across a heterogeneous cloud infrastructure,
and use tools developed for the EGI Federated Cloud platform as examples. Finally, plans for future
development will be introduced in Section 4 and the impact of the work done will be summed up
in Section 5.

2. Appliance Preparation Principles

Whether it is IaaS or PaaS, appliances became the cornerstones of today’s clouds. Cloud
users expect an ability to choose from a variety of ready-to-use appliances, prepared by the cloud
providers for them. This is a trend that has to be accepted and embraced by cloud providers. Cloud
providers are therefore presented with challenges brought by these requirements.

2.1 Requirements for Cloud Appliances

Both cloud appliances for IaaS and PaaS share the same foundation — an operating system.
More and more popular choice of operating system among cloud users is Linux and its deriva-
tives. Linux is an open source operating system kernel well known mainly among more technical
audience. Thanks to its openness, throughout the years, users and companies created numerous
so-called distributions — collections of software easily accessible and usable by users. There are
hundreds of Linux distributions in existence but only a few have a steady place on the market and
are considered to be the leaders. Hence, cloud providers are basically forced to support at least
these few leading distributions to provide users with a choice. Despite the fact that all the distri-
butions are based on the Linux kernel, each distribution is a bit different with different installation
process and configuration. That said, creation of only a few of virtual machine images with just
a base operating system can be a complicated and time-consuming task, especially when done
repeatedly and manually.

Once the appliance image is prepared and the base operating system installed, it has to be con-
figured for a smooth run within a cloud platform. Again, different distributions require different sets
of configurations but all the appliances share the same concepts of what should be pre-configured
so that users can be provided with a practical starting point. One necessary functionality that has to
be configured is remote access, allowing users to access the virtual machine once it is instantiated
from the image. Users need to gain control over the virtual machine either via SSH (accessing com-
mand line), VNC (accessing graphical interface) or any other way that is desirable and acceptable
by users. In case of PaaS clouds, users may be restricted to use only appliance-specific tools via
some specialized interface, e.g., a web console. Granting users access rights to the virtual machine
is doubtless a necessity but it may open the appliance to security threats. Firewall configuration is
therefore another crucial part of the appliance preparation process.

Virtual Appliance Lifecycle Management Michal Kimle

The last step in the appliance building process is usually the installation of appliance spe-
cific software. In most cases, this part applies only to PaaS clouds but there may be situations
where an IaaS cloud provides virtual machines with pre-installed tools. Software installation may
once again differ for various distributions, which renders the whole appliance production process
unmaintainable when done manually.

Most of the cloud platforms today come with a feature called contextualization, which allows
users to make certain configuration modifications within the appliance prior to its instantiation.
This is usually achieved by various methods from simple bash scripts run on virtual machine’s
first start to complex solutions, e.g., cloud-init [1] that can easily manage users, configuration and
services of the launched virtual machine. Support of this feature, especially with mechanisms like
cloud-init, needs to be incorporated into the appliance preparation process so it can be ready when
users want to utilize such a component.

Publish [Expire]—»[Discontinue]

Update

Figure 1: Appliance life cycle

This section makes it obvious that appliance generation is a complex process which can in-
troduce nontrivial problems even for a low number of appliances. Furthermore, it is a process
that has to be performed repeatedly and frequently (Fig. 1). All these facts lead to the conclusion
that this process cannot be maintained manually but has to be fully automated. Automation using
proper tools can solve multiple problems presented herein and increase overall productivity. There
are multiple tools available to address one or more phases of appliance preparation. The next sec-
tion will introduce a tool titled COMFY, which provides an all-in-one solution for the appliance
production process.

2.2 Automated Cloud Appliances Production

As mentioned in Section 2.1, automation is a must in order to manage adequate appliance pro-
duction process. To achieve this goal, a tool named COMFY [2] has been designed and developed.
The main purpose of COMFY (which is an acronym for Cloud Image Factory) is to easily cre-
ate virtual appliance images of multiple Linux distributions with only a little or no configuration.
COMFY is currently capable of delivering images of most popular cloud distributions, namely De-
bian, Ubuntu, CentOS and Scientific Linux, which are pre-configured for effortless use in a cloud
environment.

Virtual Appliance Lifecycle Management Michal Kimle

An image build is guided by appliance description, partly consisting of the overall COMFY
configuration (for common options such as disk size or image format), and partly of appliance
description files, which are specific for each appliance. Appliance description files provide more
advanced options that can be used to optimize the building process and define custom modifications
including disk partition layout and options for virtualisation platforms. COMFY ships with sensible
default configuration so that adjustments are in most cases not necessary.

The basic component of COMFY’s building process is a software developed by HashiCorp
called Packer [5]. Packer is a tool for creating virtual machine images for multiple platforms from
a single source configuration. It can use multiple virtualisation tools, e.g., VirtualBox [6], QEMU
[7], OpenStack [8] and others to create a virtual machine and setup an installation process. If
needed, a local Web server is launched to serve files required by distribution installation process.

At the end of the installation, before the virtual machine shuts down, Packer provides a pro-
visioning feature allowing contextualization of the appliance just created. Again, multiple forms
are supported from simple bash scripts run on a virtual machine to complex solutions, e.g., Pup-
pet [10] or Chef [11] recipes. This way, software can be installed and fundamental configuration
made in the appliance. COMFY currently uses provisioning via simple bash scripts but, as stated
in Section 4, transition to Puppet recipes is in progress.

The last part of the appliance building process is the generation of appliance metadata in the
form of a JSON-formatted descriptor. This descriptor contains information about the appliance’s
version, identifier, memory and CPU requirements, installed distribution and associated image files
or any other arbitrary data. The main purpose of these metadata is an easy integration with Open-
Nebula cloud platform described in Section 3.1, but can be simply parsed by any other software
managing appliance.

3. Appliance Distribution and Life Cycle Management

With the appliance (re)generated, further steps must be taken to make it available either as a
new product, or a replacement for an older version. That task requires additional automation even
in a single cloud site setup (Subsection 3.1) and becomes even more complicated if the appliance
is to be made available on different cloud sites relying on different cloud management frameworks
(Subsection 3.2).

3.1 Cloud Site Considerations — an OpenNebula-based Case Study

Appliance preparation is only a first step in the appliance life-cycle management. For an ap-
pliance to be made available to users, it has to be uploaded and registered either within a cloud
platform, allowing users to instantiate the appliance, or to other image distribution platform pro-
viding users with access to bare images. But that is not the end of the life-cycle. Appliances need to
be regularly updated, whether because of the new release of installed software or to patch security
issues, and when the time comes, they also need to expire and be discontinued. Clearly, such a
process can be time-consuming and requires automation.

The solution proposed to address this issue is a software product called NIFTY [12]. NIFTY
stands for OpenNebula Image File Synchronization Utility and as the name suggests, it was de-

Virtual Appliance Lifecycle Management Michal Kimle

signed to be used with the OpenNebula cloud platform. NIFTY is able to upload and register
appliance images into OpenNebula cloud as well as handle appliance updates and expiration.

Despite its name and the fact that OpenNebula is currently the only supported cloud platform,
NIFTY’s modular design allows only a loose binding with OpenNebula and makes future support of
other platforms simple enough without having to modify the core functionality of the application.

When started, NIFTY reads an appliance descriptor (described in Sections 2.2 and 3.2) to
determine what is the next course of action. In case of a new appliance, an appliance image is
uploaded into OpenNebula where it is registered and a virtual machine template is automatically
created so that users can immediately instantiate virtual machines based on the new appliance. The
image uploading process may vary for different platforms or even for different setups of the same
platform. Because of this, NIFTY uses a concept of modular transport methods, each dealing with
image upload differently and the one used is selected in NIFTY’s configuration.

Should the appliance expire, NIFTY disables the appliance image and deletes its virtual ma-
chine template from OpenNebula, so that users are no longer able to instantiate the expired appli-
ance. An appliance update is therefore a combination of expiring the old version and registering
the new one. As described in Section 2, appliances expired for a longer period of time are unlikely
to get updated and have to be removed. NIFTY includes a concept of a grace time period after
which expired appliances are automatically deleted from the cloud.

3.2 Solutions for Large-Scale Heterogeneous Infrastructures

Large infrastructures add an additional level of complexity to the automation process as appli-
ances must be shared among providers, distributed from one or more approved sources and made
available in a uniform way across the whole infrastructure.

3.2.1 EGI Federated Cloud Image Distribution Mechanism

The EGI Applications Database [4] is a centralized service that stores information about soft-
ware tools integrated with the EGI infrastructure. Among all the various types of items stored there,
EGI AppDB contains a set of appliances which allow the community to use scientific software and
other relevant tools easily in cloud. The Cloud Marketplace section stores images for the cloud to
be made available as appliances. At first, however, there needs to be a mechanism that distributes
these appliances across the EGI Federated cloud sites.

For this purpose, the vmcaster and vmcatcher are used [18]. Vmcaster is a simple tool for
managing and updating a published virtual machines image lists, following the HEPiX image list
format. More information on vmcaster can be found at its home GitHub repository page [14]. With
this tool, Virtual Machine Image Lists with appliances from EGI AppDB are generated. Usually,
image lists used in the infrastructure are so-called VO-wide lists. This means that the administrators
of a virtual organization choose relevant appliances and create an image list for them.

If sites want to use images from a given image list, they need to subscribe to it. This subscrip-
tion is provided by the second tool mentioned — the vmcatcher [15].

Vmcatcher allows users (for example site administrators) to subscribe to the given image list,
cache the images referenced in it, verify the image list source with x.509-based public key cryp-
tography, validate listed images against sha512 hashes given in the list and finally emit events

Virtual Appliance Lifecycle Management Michal Kimle

Appliance

Upload & Register EGI Applications Database

vmCaster

Generate . Pull Image List
Appliance g Image

vmCatcher

COMFY @ Vil ppplenge e
Cloud Image Factory Handling Utility

| Converted
Image

NIFTY
OpenNebula Image File
Synchronization Utility

| Upload Image
m= Create/Modify Template

OpenNebula Cloud API

Figure 2: Overall design of the virtual appliance distribution and life cycle management system, showing
individual components, their tasks and interactions

to be handled by subsequent applications that will appropriately process, update or expire virtual

machine images without having to validate them themselves again.

There are various event types that can be provided by vmcatcher:

ProcessPrefix

AvailablePrefix

AvailablePostfix

ExpirePrefix
ExpirePosfix
ProcessPostfix

SubscriptionlmageNew

Vmcatcher has started updating its cache.

An image will be available soon — there is an ongoing attempt to
retrieve it.

An image was successfully validated as being available and placed
in the cache directory.

This image will no longer be available in the cache directory.
This image is no longer in the cache directory.
Vmcatcher has finished updating its cache.

A new image exists in a subscribed image list.

Virtual Appliance Lifecycle Management Michal Kimle

3.2.2 Automated Distribution

So far, only NIFTY and vmcatcher were discussed. But there is a gap between these two tools,
prohibiting their cooperation on automated distribution of appliances from AppDB to cloud storage.
Images must be available in a proper format, with all the necessary information for successful
registration in cloud storage. A tool titled ITCHY [13] aims to bridge this gap.

ITCHY stands for virtual applianCe Handling utilitY. It basically converts heterogeneous
output from vmcatcher and prepares all necessary files for upload an registration into cloud storage.

ITCHY consists of two cooperating tasks. One serves for archiving vmcatcher events, second
one for further processing. This concept was needed for two reasons. First reason is that vimcatcher
runs regularly as a cron job. There is a possibility that image processing time would be greater than
time period between two vmcatcher runs. In this case, the whole process would fail. The second
reason is that it is impossible to interrupt vmcatcher event processing and start over. Therefore,
the first part of ITCHY running with vmcatcher as event handler is as simple as it can be. The
other acts separately and can be restarted or delayed if there is a need to do so since it cannot affect
vmcatcher.

ITCHY' s first task is archiving. As mentioned earlier, vimcatcher is designed to use an event
handler, which should take the form of software hooked to vmcatcher’s event processing. In our
case, itis the itchy archive. This task takes information about vmcatcher events and stores it
in JSON format for later processing.

The second task, itchy process, is more complex. It iterates trough all stored events and
(as is easily guessed from its name) process them. From the list mentioned in Section 3.2.1, there
are only two events that are interesting for its purpose. These are AvailablePostfix and ExpirePostfix.
Other events are just detected, but do not require more attention.

The results of both events are almost the same — there is information about required changes
in cloud datastore. Then, it is easy for another tool (in this case NIFTY) to apply these changes in
the cloud.

The AvailablePostfix event is probably the most common. There is an image stored in vm-
catcher’s cache directory and it needs to be processed. ITCHY has to locate proper image file and
check it. If it is in proper format, it is just copied to the output location, otherwise the original image
file is transformed. If it is already in simple virtual disk format (raw, gcow, etc.), the conversion is
rather easy. Numerous images are, however, saved as archives (ova or far) and their processing is
more complicated.

After an image is processed, its description file is created. This file contains all the neces-
sary information required for successful appliance registration in the cloud. The information is
loaded from the JSON event file created earlier by the ITCHY archive job. In the end, there is the
description file stored with a link to the corresponding image file.

When an ExpirePostfix event arrives, ITCHY needs to create the information that the given
image will be unavailable and needs to be disabled in the cloud datastore. Therefore a description
file for expiration is created. This file contains information on how and which appliance should be
disabled.

Virtual Appliance Lifecycle Management Michal Kimle

4. Future Work

All the tools described in this paper are rather new, hence the obvious next step is their field
testing. At the time of writing this paper, both NIFTY and ITCHY are being deployed on sites
engaged in EGI Federated Cloud initiative. This will hopefully bring in the much needed feedback
and will help discover and solve any unforeseen issues. As for COMFY, appliance images gener-
ated by this tool have already been employed in CESNET’s MetaCloud [9] for several months and
multiple flaws were already discovered and fixed.

It is important to keep up with new trends and demands, therefore the next phase of the devel-
opment plan, apart from fixing reported problems, is the addition of new features. In case of NIFTY,
emphasis will be put on supporting other cloud and image distribution platforms, e.g., OpenNebula
Marketplace [17] or EGI Application Database [4]. This will not affect the basic functionality but
it will be merely an independent extension allowing NIFTY to operate with other platforms.

The majority of future development is planed for the COMFY component. Appliance creation
is a complex process and there is much to improve to provide a simple but powerful building tool.
As already mentioned in Section 2.2, provisioning with bash scripts will be replaced by more robust
Puppet recipes. This transition will contribute to reusability of similar installation directives among
multiple distributions as well as to an ability to easily separate unique ones. Since Puppet recipes
are a wide-spread and popular concept users are well familiar with, it may lead to an increase
of custom-made appliances. Furthermore, COMFY will support a concept of appliance hierarchy
and inheritance, allowing custom appliance builders to inherit from other appliances and make
modifications without having to create an appliance from scratch. The same method is used by
Docker [19] images and is proven to be a favourable one.

In relation to Puppet recipes, future releases are planned to support retrieval of information
on appliances to be built from gir [20] repositories. This will introduce a more modular approach
and will decrease the size of distributed software, because necessary files will be downloaded on
demand during the building process. Such a solution is popular in open-source communities and
many open-source projects are built in a similar way.

5. Summary

In this paper, a concept of Virtual Appliance Lifecycle Management has been described. This
paper has discussed the basic requirements of appliance principles and their usage in cloud. In
addition, a fully functional complex system of tools, used for automation of creating, distribution
and life cycle management, was presented, together with some possible improvements scheduled
for the future.

The principles and tools outlined herein are partly already in production, partly in the process
of being deployed in a large-scale heterogeneous cloud federation.

6. Acknowledgements

This work is co-funded by the EGI-Engage project (Horizon 2020) under Grant number 654142.

Virtual Appliance Lifecycle Management Michal Kimle

Access to computing and storage facilities owned by parties and projects contributing to the
National Grid Infrastructure MetaCentrum, provided under the programme "Projects of Large Re-
search, Development, and Innovations Infrastructures” (CESNET LM2015042), is greatly appreci-
ated.

References

[1] cloud-init, [Online] Available: https://cloudinit.readthedocs.org/en/latest/ [Accessed: November 11,
2016].

[2] COMFY, [Online] Available: https://github.com/CESNET/comfy [Accessed: November 11, 2016].

[3] European Grid Infrastructure, Federated Cloud, [Online] Available:
https://www.egi.eu/infrastructure/cloud/ [Accessed: November 11, 2016].

[4] European Grid Infrastructure, Applications database, [Online] Available:
https://www.egi.eu/services/catalogue/appdb.html [Accessed: November 11, 2016].

[5] HashiCorp, Packer, [Online] Available: https://www.packer.io/ [Accessed: November 11, 2016].
[6] VirtualBox, [Online] Available: https://www.virtualbox.org/ [Accessed: November 11, 2016].
[7] QEMU, [Online] Available: http://wiki.gemu.org/Main_Page [Accessed: November 11, 2016].

[8]1 QEMU, [Online] Available: https://www.openstack.org/https://www.openstack.org/ [Accessed:
November 11, 2016].

[9] MetaCentrum, HPC Cloud interface, [Online] Available:
http://www.metacentrum.cz/en/cloud/index.html [Accessed: November 11, 2016].

[10] Puppet Labs, What is Puppet?, [Online] Available: https://puppetlabs.com/puppet/what-is-puppet
[Accessed: November 11, 2016].

[11] Chef, [Online] Available: https://www.chef.io/chef/https://www.chef.io/chef/ [Accessed: November
11, 2016].

[12] NIFTY, [Online] Available: https://github.com/CESNET/nifty [Accessed: November 11, 2016].
[13] ITCHY, [Online] Available: https://github.com/CESNET/itchy [Accessed: November 11, 2016].

[14] vmcaster Source, [Online] Available: https://github.com/hepix-virtualisation/vmcaster [Accessed:
November 11, 2016].

[15] vmcatcher Source, [Online] Available: https://github.com/hepix-virtualisation/vmcatcher [Accessed:
November 11, 2016].

[16] HEPIX Virtualisation Working Group, August 26, 2012, [Online] Available:
http://grid.desy.de/vm/hepix/vwg/doc/pdf/Book-a4.pdf [Accessed: November 11, 2016].

[17] C12G, OpenNebula Marketplace, [Online] Available: http://marketplace.c12g.com/appliance
[Accessed: November 11, 2016].

[18] HEPIX Virtualisation Working Group, August 26, 2012, [Online] Available:
http://grid.desy.de/vm/hepix/vwg/doc/pdf/Book-a4.pdf [Accessed: November 11, 2016].

[19] Docker, [Online] Available: https://www.docker.com/ [Accessed: November 11, 2016].
[20] git-scp, [Online] Available: https://git-scm.com/ [Accessed: November 11, 2016].

https://cloudinit.readthedocs.org/en/latest/
https://github.com/CESNET/comfy
https://www.egi.eu/infrastructure/cloud/
https://www.egi.eu/services/catalogue/appdb.html
https://www.packer.io/
https://www.virtualbox.org/
http://wiki.qemu.org/Mainprotect T1	extunderscore Page
https://www.openstack.org/
http://www.metacentrum.cz/en/cloud/index.html
https://puppetlabs.com/puppet/what-is-puppet
https://www.chef.io/chef/
https://github.com/CESNET/nifty
https://github.com/CESNET/itchy
https://github.com/hepix-virtualisation/vmcaster
https://github.com/hepix-virtualisation/vmcatcher
http://grid.desy.de/vm/hepix/vwg/doc/pdf/Book-a4.pdf
http://marketplace.c12g.com/appliance
http://grid.desy.de/vm/hepix/vwg/doc/pdf/Book-a4.pdf
https://www.docker.com/
https://git-scm.com/

