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1. Introduction

Three-dimensional general relativity provides us with an interesting toy model to investigate
diverse aspects of gravity [1, 2] which, otherwise, would lie beyond our current understanding.
While its dynamics is substantially simpler than the one of its four-dimensional analog, three-
dimensional Einstein gravity still exhibits several phenomena that are present in higher dimensions
and are still poorly understood, such as black hole thermodynamics. Remarkably, Einstein gravity
in 2+1 spacetime dimensions admits black hole solutions [3] whose properties resemble very much
those of the four-dimensional black holes, as for instance the fact of having an entropy obeying the
Bekenstein-Hawking area law. In order to admit theses black hole solutions in three-dimensions,
the theory requires the presence of a negative cosmological constant [4], making the solutions to
behave asymptotically as Anti-de Sitter (AdS) space. This makes this model even more powerful
since it allows us to make use of AdS/CFT correspondence [5] to ask fundamental questions about
quantum gravity. Although a fully satisfactory quantum version of three-dimensional general rela-
tivity has not yet been accomplished [6], this program has already shown to be promising, specially
in the context of black hole physics [7].

The AdS/CFT correspondence permits to formulate questions about quantum gravity in AdS3

spaces in terms of its much better understood dual two-dimensional conformal field theory (CFT).
As a matter of fact, in three dimensions, the relation AdS3/CFT2 was discovered a long time before
the holographic correspondence was formulated: In the work [8], which, according to Witten, can
be considered as the precursor of AdS/CFT correspondence, Brown and Henneaux showed that the
symmetry algebra of asymptotically AdS3 spaces is generated by two copies of Virasoro algebra
with non-vanishing central charge, namely the algebra of local conformal transformations in two
dimensions. At that moment, the appearance of a central charge in a classical context was surpris-
ing, while it is now understood as a crucial ingredient in the holographic context. Soon later, it
was shown [9] that the asymptotic dynamics of Einstein gravity around AdS3 space is governed
by the Liouville action, a non-trivial two-dimensional conformal field theory whose central charge
coincides with the one found in [8]. These notes are aimed at describing the connection existing
between these theories, showing in detail all the steps that brings one from three-dimensional Ein-
stein gravity in asymptotically AdS spaces to the Liouville field theory action. Finding the dual
conformal field theory living at the boundary of three-dimensional gravity would solve quantum
gravity in three-dimensions; the classical computation we will present shows that the dual theory
has to admit Liouville theory as an effective description in a certain regime.

These notes are organized as follows: After reviewing in Section 2 the action of gravity in
2+ 1 spacetime dimensions and the absence of local degrees of freedom, we present in Section
3 the black hole solution hosted in the case of negative cosmological constant. In Section 4, we
show how the Einstein-Hilbert action can be written as a Chern-Simons action for the gauge group
SL(2,R)× SL(2,R), using the vielbein and spin connection formalism. In Section 5, we present
the Brown-Henneaux AdS3 boundary conditions and compute the associated asymptotic symmetry
algebra in the Chern-Simons formalism. Section 6 contains a brief introduction on Wess-Zumino-
Witten (WZW) models. The two steps of the reduction of the Chern-Simons action to, first, a
non-chiral WZW model, and then to a Liouville action, are detailed in Sections 7 and 8. After a
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brief introduction on Liouville theory, in Section 9, we discuss in Section 10 the possibility of the
latter to account for the microstates of the BTZ black hole.

2. Gravity in 2+1 dimensions

Pure gravity in 2 + 1 spacetime dimensions is defined by the three-dimensional Einstein-
Hilbert action (where we set the speed of light to c≡ 1):

SEH[g]≡
1

16πG

∫
M

d3x
√
−g(R−2Λ)+B, (2.1)

with G the three-dimensional Newton constant, g ≡ detgµν (µ,ν = 0,1,2), with a metric gµν of
signature (−,+,+), R ≡ Rµνgµν is the curvature scalar, and Rµν the Ricci tensor. M is a three-
dimensional manifold, and Λ is the cosmological constant, which can be positive, negative, or null,
yielding respectively locally de Sitter (dS), Anti-de Sitter (AdS), or flat spacetimes. Here, we will
be concerned with Anti-de Sitter spacetime, for which the cosmological constant is related to the
AdS radius ` through Λ =−1/`2. Action (2.1) is defined up to a boundary term B, which is there
in order to ensure that the action has a well-defined action principle.

Extremizing the action with respect to the metric gµν yields the Einstein equations

Rµν −
1
2

gµνR+Λgµν = 0. (2.2)

An important property of general relativity in 2+1 dimensions is that any solution of the vacuum
Einstein equations (2.2) with Λ < 0 is locally Anti-de Sitter (locally de Sitter if Λ > 0 and locally
flat if Λ = 0). This can be verified by realizing that the full curvature tensor in three dimensions is
totally determined by the Ricci tensor1

Rµνρσ = gµρRνσ +gνσ Rµρ −gνρRµσ −gµσ Rνρ −
1
2

R(gµρgνσ −gµσ gνρ). (2.3)

As a consequence, any solution of Einstein equations (2.2) has constant curvature; namely

Rµνρσ = Λ(gµρgνσ −gµσ gνρ). (2.4)

Physically, this means that on three-dimensional Einstein spacetimes there are no local propa-
gating degrees of freedom: there are no gravitational waves in this theory. Another way to see that
gravity in D = 3 dimensions has no degrees of freedom (d.o.f.) is counting them explicitly: Out
of the D(D+1)/2 components of a symmetric tensor gµν in D spacetime dimensions, one can al-
ways remove D of them using diffeomorphism invariance (one removes one d.o.f. per coordinate).
Moreover, D components of the metric appear in the Lagrangian with no temporal derivative, they
are therefore no true d.o.f. but Lagrange multipliers. This counting leads therefore to

D(D+1)
2

−D−D = 0 (D = 3). (2.5)

1In three dimensions, the Weyl tensor vanishes identically.
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A priori, this property may look very disappointing: How could this theory be a realistic model
to study four-dimensional gravity if there is no graviton at all? However, despite the absence of
local d.o.f., it turns out that three-dimensional gravity is in fact far from being sterile. This is
because of two fundamental reasons: first, as we will see later, even though every spacetime is
locally equivalent to a constant curvature spacetime, it may differ from the maximally symmetric
solution by global properties, and this allows for interesting geometrical properties such as non-
trivial causal structures. The second reason is that, unexpectedly, in the case Λ < 0, there exist
black hole solutions.

3. The three-dimensional black hole

To everyone’s surprise, Bañados, Teitelboim and Zanelli (BTZ) showed in 1992 that 2+ 1-
dimensional gravity admits a black hole solution [3] that shares many physical properties with the
four-dimensional Kerr black hole. The BTZ black hole2 of mass M and angular momentum J is
described, in Schwarzschild type coordinates, by the metric

ds2 =−(N(r))2 dt2 +(N(r))−2 dr2 + r2 (dϕ +Nϕ(r)dt)2 , (3.1)

where the lapse and shift functions are given by3

N(r)≡
√
−8GM+

r2

`2 +
16G2J2

r2 , Nϕ(r)≡−4GJ
r2 . (3.2)

with −∞ < t < +∞, 0 < r < +∞ and 0 ≤ ϕ ≤ 2π . It solves the Einstein equation (2.2) with
cosmological constant Λ =−1/`2.

The BTZ metric (3.1) is stationary and axially symmetric, with Killing vectors ∂t and ∂ϕ . This
metric exhibits a (removable) singularity at the points r = r± where N(r±) = 0; that is,

r± = `

[
4GM

(
1±
√

1− (J/M`)2
)]1/2

. (3.3)

When |J| ≤ M`, the BTZ possesses an event horizon at r+ and an inner Cauchy horizon (when
J 6= 0) at r−. In terms of r±, the mass and angular momentum read

M =
r2
++ r2

−
8G`2 , J =

r+r−
4G`

. (3.4)

bad choice of system of coordinates), indicating the presence of even horizons. To see that the BTZ
is indeed a black hole, namely that at r+ is indeed a event horizon, (...).

In the case |J| = M`, both horizons coincide r+ = r−; this case corresponds to the so-called
extremal BTZ. If M < 0 (or if |J| becomes too large), the horizon at r = r+ disappears, leading
therefore to a naked singularity at r = 0. Relation |J| ≤ M` plays therefore the role of a cosmic

2For a review, see [10].
3Notice that many authors set 8G≡ 1.
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censorship condition. There is, however, a special case: when M = −1/(8G) and J = 0, both the
horizon and the singularity disappear! At this point, the metric exactly coincides with (the universal
covering of) AdS3 spacetime; namely

ds2
M=− 1

8G ,J=0 =−
(

1+
r2

`2

)
dt2 +

(
1+

r2

`2

)−1

dr2 + r2dϕ
2.

Therefore, AdS spacetime is separated from the continuous spectrum of the BTZ black holes by a
mass gap of ∆0 = 1/(8G), see Figure 1. The solution with−1/(8G)< M < 0 corresponds to naked
singularities, with conical singularity at the origin. These solutions exhibit an angular deficit around
r = 0 and admit to be interpreted as particle-like objects [1]. Therefore, one cannot continuously
deform a black hole state to the AdS3 vacuum, since it would imply to go through the regions with
naked singularities. The solutions with M < −1/(8G) also correspond to naked singularities, in
this case with angular excesses around r = 0.

Figure 1: Spectrum of the BTZ black hole. Black
holes exist for M≥ 0, |J| ≤M`. The vacuum state
M = − 1

8G , J = 0, separated by a gap from the
continuous spectrum, corresponds to AdS3.

Since, as we saw above, any solution of pure gravity in three dimensions is locally of constant
curvature, the BTZ solution (3.1) is locally Anti-de Sitter: every point of the black hole has a
neighborhood isometric to AdS3 spacetime, and therefore the whole black hole can be expressed
as a collection of patches of AdS assembled in the right way. The fact that BTZ differs from AdS
only by global properties suggests that the black hole metric can be obtained by identifying points
of AdS spacetime by a sub-group of its isometry group. That is actually what Henneaux, Bañados,
Teiteilboim and Zanelli showed in [11], where these identifications were given explicitly.

Very far away from the black hole, namely when r� r+, the metric reduces to

ds2
M=J=0 =−

r2

`2 dt2 +
`2

r2 dr2 + r2dϕ
2. (3.5)

The asymptotic behavior4 of the BTZ black hole and AdS3 is thus the same, this is why the BTZ
is said to be asymptotically AdS. This is in contrast with the Schwarzschild and Kerr black holes

4By asymptotic, here simply mean far away. We will give a more precise definition in Section 5.
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which are asymptotically flat. In fact, there is no black hole asymptotically flat, nor asymptotically
de Sitter in three-dimensions (for pure gravity) [4].

The g00 component of the BTZ is zero at r = rerg, with

rerg =
√

r2
++ r2

− = `
√

8GM. (3.6)

The r < rerg region is called ergosphere, meaning that all observers in this region are unavoidably
dragged along by the rotation of the black hole. The existence of an event horizon and of an ergo-
sphere region make the BTZ extremely similar to the four-dimensional Kerr black hole. Another
feature that BTZ shares with the Kerr solution is that, in both spaces, the surface r = r− is a Killing
horizon. In fact, even though BTZ has no curvature singularity at the origin, it is quite similar to
realistic (3+1)-dimensional black holes: it is the final state of gravitational collapse [12], and pos-
sesses similar properties also at quantum level. Indeed, remarkably, the BTZ exhibits non-trivial
thermodynamical properties; it radiates at a Hawking temperature

TBH =
h̄(r2

+− r2
−)

2π`2r+
, (3.7)

and has a Bekenstein-Hawking entropy

SBH =
A

4h̄G
, (3.8)

with A = 2πr+ the horizon size. That is, three-dimensional black holes also obey the area law,
whose full microscopic understanding is one of the main questions in quantum gravity. Besides,
these thermodynamical quantities satisfy the first law of black hole thermodynamics

dM = TBHdSBH +Ω dJ, (3.9)

where Ω = r−/(r+`) is the angular velocity at the horizon. Notice that the BTZ also exhibits a
Hawking-Page transition at r+ ∼ `.

Finally, it is worth mentioning that, besides pure gravity, the BTZ solution appears in many
other frameworks, such as supergravity [13], string theories [14], and higher-spins [15]. Moreover,
the BTZ turned out to appear in the near horizon limit of higher-dimensional solutions [16]; all of
this showing the relevance of this black hole solution in more general set-ups.

4. 3D gravity as a gauge theory

A crucial property of three-dimensional gravity action (2.1) is that it can be rewritten in terms
of ordinary gauge fields, in such a way that both the structure of the action and equations of motion
simplify substantially. This fact was discovered by Achúcarro and Townsend [17], and latter by
Witten [18], and holds for any sign of the cosmological constant. The validity of this result can be
extended to supergravity actions [17, 19], as well as higher-spins [20, 21].

6
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4.1 Vielbein and spin connection formalism

This result is based on the first-order, or Palatini formulation of general relativity. This consists
in the following: Instead of working as we usually do with the metric gµν , we will use an auxiliary
quantity ea

µ (with a frame index a = 0,1,2), called frame field, or vielbein5, which can be thought
of as the square root of the metric6; namely

gµν(x) = ea
µ(x)ηabeb

ν(x), (4.1)

where ηab is the metric of flat 3D Minkowski spacetime.

Relation (4.1) can be simply seen as the transformation of a tensor under a change of coordi-
nates described by the matrix ea

µ . Since ea
µ is a non-singular matrix, with e≡ detea

µ =
√
−detg 6= 0,

there is an inverse frame field eµ
a (x) such that ea

µeµ

b = δ a
b and eµ

a ea
ν = δ

µ

ν . Notice that, for a given
metric, the frame field is not unique; indeed, all frame fields related by a local Lorentz transforma-
tion e′aµ = Λ

−1a
b (x)eb

ν(x) with Λ∈ SO(2,1) are equivalent (the transformation is local since it affects
only the frame indices, while the spacetime indices do not see such transformation).

We can use the vielbein to define a basis in the space of differential forms. We define the
one-form ea ≡ ea

µdxµ and the Levi-Civita in frame components εabc in the following way:

εµνρ ≡ e−1
εabcea

µeb
νec

ρ ,

ε
µνρ ≡ eε

abceµ
a eν

b eρ
c .

(4.2)

A covariant derivative is made out of the normal derivative plus an affine connection; schemat-
ically D = ∂ + Γ. In the tetrad formalism, the role of this connection is played by one-forms
ωab = ωab

µ dxµ , with ωab = −ωba. This quantity is introduced because it permits to construct a
quantity that transforms as a local Lorentz vector. Indeed, unlike the 2-form dea, the following
quantity, called the torsion 2-form of the connection,

T a ≡ dea +ω
a

b∧ eb , (4.3)

does transform as a vector under local Lorentz transformation, namely T a → Λ
−1a

bT b, provided
the quantity ωa

b, whose components ωab
µ are called spin connections, transforms as

ω
a

b→ Λ
−1a

cdΛ
c

b +Λ
−1a

cω
c

dΛ
d

b. (4.4)

Equation (4.3) is called the first Cartan structure equation. The second Cartan structure equation is
given by

dω
ab +ω

a
c∧ω

cb = Rab, (4.5)

5In three dimensions, it receives the name dreibein; vierbein or tetrad in four dimensions.
6Its existence comes from the fact that the metric tensor can be diagonalized by an orthogonal matrix Oa

µ with
positive eingeinvalue λ a, the vielbein is therefore defined as ea

µ =
√

λ aOa
µ .

7
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with

Rab
µν(ω) = ∂µω

ab
ν −∂νω

ab
µ +ω

ac
µ ω

b
νc−ω

ac
ν ω

b
µc (4.6)

the curvature tensor, and

Rab =
1
2

Rab
µν(x)dxµ ∧dxν ,

Rλσ
µν = eλ

a eσ

b Rab
µν .

(4.7)

We can of course relate the spin connection with the usual Christofell symbols; the relation is
Γ

ρ

µν = eρ
a (∂µea

ν +ω a
µ beb

ν). To see that the spin connection ω plays the role of a gauge field, notice
the analogy with the Yang-Mills connection A:

D = ∂ +A , F = dA+A∧A,

D = ∂ +ω , R = dω +ω ∧ω.
(4.8)

Let us now go back to our three-dimensional Einstein-Hilbert action. In terms of the quantities
we have defined above, (2.1) reads (we will take care of the boundary term later)

SEH[e,ω] =
1

16πG

∫
M

εabc

(
ea∧Rbc[ω]− Λ

3
ea∧ eb∧ ec

)
. (4.9)

Indeed, using (4.2), we notice that

d3x
√
−g = edx0dx1dx2 =

1
3!

eεµνρdxµ ∧dxν ∧dxρ

=
1
3!

εabcea∧ eb∧ ec;
(4.10)

and, using (4.7), we have

εabc ea∧Rbc =
1
2

eεµαβ Rαβ

νρε
µνρd3x

= d3x
√
−gR.

(4.11)

In what follows, we will adopt the so-called dual notation (valid only in three dimensions),

Ra ≡
1
2

εabcRbc ↔ Rab ≡−ε
abcRc,

ωa ≡
1
2

εabcω
bc ↔ ω

ab ≡−ε
abc

ωc.

(4.12)

With this, we notice that the gravity action (4.9) can finally be rewritten as

SEH[e,ω] =
1

16πG

∫
M

(
2ea∧Ra[ω]− Λ

3
εabcea∧ eb∧ ec

)
. (4.13)

8
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4.2 The Chern-Simons action

Now that we have at hand the gravity action in terms of the vielbein and the spin connection,
we are ready to prove, as announced above, that three-dimensional gravity is equivalent to a gauge
theory with a specific kind of interaction, called Chern-Simons theory. We will first introduce
this very interesting model for the readers who are not familiar with it. For an introduction to
Chern-Simons in 3D, see for instance [22].

A Chern-Simons action for a compact gauge group G is given by

SCS[A] =
k

4π

∫
M

Tr
[

A∧dA+
2
3

A∧A∧A
]
, (4.14)

where k is a constant called level, while the gauge field A represents a Lie algebra-valued one-form
A = Aµdxµ , and Tr represents a non-degenerate7 invariant bilinear form on the Lie algebra (of the
gauge group G).

Integrating by parts, the variation of action (4.14) takes the form

δSCS[A] =
k

4π

∫
M

Tr [2δA∧ (dA+A∧A)]− k
4π

∫
∂M

Tr [A∧δA] . (4.15)

If δA is chosen such that its value on the boundary ∂M is such that the second term vanishes, we
obtain

F ≡ dA+A∧A = 0, (4.16)

where F is the usual field strength 2-form. These equations imply that, locally,

A = G−1dG, (4.17)

which means that A is a gauge transformation of the trivial field configuration; in other words,
A is pure gauge. Therefore, a Chern-Simons theory has no true propagating degrees of freedom:
it is purely topological. Indeed, all the physical content of the theory is contained in non-trivial
topologies, which prevent relation (4.17) to hold everywhere on the manifold M . existence of
boundaries for the manifold M .

If we write A = AaTa, with Ta a basis8 of the Lie algebra of the gauge group G, then one has,
for the first term of (4.14),

Tr [A∧dA] = Tr(TaTb)
[
Aa∧dAb

]
. (4.18)

We then see that dab ≡ Tr(TaTb) plays the role of a metric on the Lie algebra, and therefore should
be non-degenerate. The existence of a Chern-Simons action, and the form it will take, relies on
whether the gauge group one wants to consider admits such an invariant non-degenerate form.
Notice that one can make use of this bilinear form to define an inner product (·, ·).

7This is asked in order that all gauge fields have a kinetic term in the action; this is always true for semisimple Lie
algebras.

8This has nothing to do with the torsion T a mentioned in the previous subsection.
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4.3 Λ < 0 gravity as a Chern-Simons theory for SO(2,2)

What Achúcarro, Townsend and Witten discovered [17, 18] is that three-dimensional gravity
action and equations of motions are equivalent to a Chern-Simons theory for an appropriate gauge
group. More precisely, their result states that pure gravity (Einstein-Hilbert action) is equivalent to
a three-dimensional Chern-Simons theory based on the gauge group SO(2,2) for Λ < 0, ISO(2,1)
for Λ = 0, or SO(3,1) for Λ > 0.

We will prove this result for the case Λ < 0, since we are interested in Anti-de Sitter spaces.
In this case, the Lie algebra involved is so(2,2), whose commutation relations are given by

[Ja,Jb] = εabcJc , [Ja,Pb] = εabcPc , [Pa,Pb] = εabcJc, (4.19)

where the indices a,b,c = 0,1,2 are raised and lowered with the three-dimensional Minkowski
metric ηab and its inverse ηab. In (4.19), we have used the three-dimensional rewriting

Ja ≡
1
2

εabcJbc ↔ Jab ≡−ε
abcJc, (4.20)

where the Jab are the usual Lorentz generators, while the Pa are the generators of the translations.
This Lie algebra admits the following non-degenerate invariant (symmetric and real) bilinear form9

(Ja,Pb) = ηab , (Ja,Jb) = 0 = (Pa,Pb). (4.21)

One then constructs the gauge field A living on this Lie algebra as

Aµ ≡
1
`

ea
µPa +ω

a
µJa. (4.22)

Notice that the Lie algebra indices are identified with the frame indices of the vielbein and spin
connection; this is crucial for the gravity ↔ gauge theory relation that we are about to show.
Equipped with the gauge field (4.22) and with the non-degenerate invariant form (4.21) one can
write the Chern-Simons action (4.14) for the gauge group G = SO(2,2). The first term is

Tr[A∧dA] = (
1
`

eaPa +ω
aJa,

1
`

debPb +dω
bJb)

=
1
`

(
ea∧dω

b +ω
a∧deb

)
ηab =

2
`

ea∧dωa,

(4.23)

while the second term is found to be

2
3

Tr[A∧A∧A] =
1
3

Tr[[A,A]∧A]

=
1
3`

(
1
`2 ea∧ eb∧ ec +3εabcea∧ω

b∧ω
c
)
.

(4.24)

9This is not the only one, though; see the comments at the end of this section.
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Therefore, we find that the Chern-Simons action for the group SO(2,2) is equal to

SCS[e,ω] =
k

4π`

∫
M

(
2ea∧Ra[ω]+

1
3`2 εabc ea∧ eb∧ ec

)
, (4.25)

where we have remembered that Ra = dωa +
1
2 εabcωb ∧ωc. We have thus shown that the Chern-

Simons action for SO(2,2) exactly matches the Einstein-Hilbert action (4.13) with Λ = −1/`2,
provided that the level acquires the value10

k =
`

4G
. (4.26)

The fact that Einstein gravity is merely a Chern-Simons action reminds us that there is no prop-
agating degree of freedom in the theory, and thus no graviton in three-dimensions, since we saw
above that this gauge theory is purely topological. However, even though there are no local excita-
tions, its dynamical content is far from being trivial due to the existence of boundary conditions11.
We will see in Section 5 that, under an appropriate choice of boundary conditions, there is in fact
not one, not two, but an infinite number of degrees of freedom living on the boundary. Boundary
conditions are necessary in order to ensure that the action has a well-defined variational principle,
but the choice of such conditions is not unique. In fact, the dynamical properties of the theory
are extremely sensitive to the choice of boundary conditions. In this context, the residual gauge
symmetry on the boundary is called global symmetry or asymptotic symmetry. The breakdown of
gauge invariance at the boundary has the effect of generating this infinite amount of degrees of
freedom.

Before concluding this section, let us mention a very useful fact, namely the isomorphism
so(2,2)≈ sl(2,R)⊕ sl(2,R) (recall that so(2,2) is semi-simple). Defining J±a ≡ 1

2 (Ja±Pa), alge-
bra (4.19) reads

[J+a ,J+b ] = εabcJ+c , [J−a ,J−b ] = εabcJ−c , [J+a ,J−b ] = 0. (4.27)

Thanks to this splitting, one can rewrite the Chern-Simons action for the so(2,2) connection12 Γ as
the sum of two Chern-Simons actions, each having their connections A, Ā in the first and second
chiral copy of sl(2,R) respectively:

A = (ea/`+ω
a)Ta , Ā = (ea/`−ω

a)Ta, (4.28)

with Ta now being the generators of sl(2,R). One can show that the decomposition of the action

10The sign of k depends on the identity
√
−g = ±e, namely depends on the choice of relative orientation of the

coordinate basis and the frame basis.
11In other words, the relevant d.o.f. are global. Introducing boundary conditions is not the only way to generate

global d.o.f., one can also consider holonomies (we will not study them here). Notice however that holonomies generate
only a finite number of degrees of freedom in the theory.

12which we previously called A

11
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then reads

SCS[Γ] = SCS[A]−SCS[Ā]≡ SCS[A, Ā], (4.29)

that is, can be rewritten as the difference of a chiral and anti-chiral Chern-Simons action.
Finally, let us mention that Einstein’s equations of motion are equivalent to the ones in the

Chern-Simons formalism, namely Fa = 0, F̄a = 0. More precisely, varying the action with respect
to ea gives the constant curvature equation

Fa + F̄a = 0 ⇔ Rab +
1
`2 ea∧ eb = 0, (4.30)

while varying with respect to ωa leads to the torsion free equation

Fa− F̄a = 0 ⇔ T a = dea +ω
a

b∧ eb = 0. (4.31)

We thus verify that solving the equations of motion in the Chern-Simons formalism is considerably
simpler than solving Einstein’s equations.

4.4 Some comments on Chern-Simons theories

Before concluding this section, let us make some remarks on Chern-Simons theories that can
be relevant for their gravity application.

Let us begin by noticing that the Chern-Simons description of gravity is valid when the vielbein
is invertible, which is true for classical solutions of gravity. However, from the gauge theory point
of view, this is not entirely natural. This is relevant because, despite the identity between the actions
of the two theories, it is not obvious that gravity and Chern-Simons are equivalent at quantum level
where, besides the action, one has to provide a set of configurations over which to perform the
functional sum. Perturbatively, close to classical saddle points, the relation between the gauge
theory and three-dimensional gravity may remain valid; however, it is not clear that the relation
still holds non-perturbatively [23]. Moreover, to claim that Chern-Simons and gravity theories are
equivalent, we have to prove that the gauge transformations and the diffeomorphisms do match (up
to a local Lorentz transformation). It is shown in [18] that this matching occurs only when the
equations of motion are satisfied, namely on-shell.

A second comment regards the definition of the invariant bilinear form appearing in (4.14). In
addition to (4.21), so(2,2) admits a second one, given by

(Ja,Jb) = ηab , (Ja,Pb) = 0 , (Pa,Pb) = ηab, (4.32)

consequence of the isomorphism so(2,2) ≈ sl(2,R)⊕ sl(2,R). One can use this new form to
construct an alternative Chern-Simons action: the so-called exotic action [18], which corresponds
to

SE[Γ] = SCS[A]+SCS[Ā]. (4.33)

This action is relevant in the construction of the so-called Topologically Massive Gravity [24].

12
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Finally, let us mention an interesting feature of the Chern-Simons coupling constant, the level
k. Generally, a Chern-Simons theory admits to be constructed by starting from a gauge invariant
action SP defined on a four-dimensional manifold M4 whose boundary is the three-dimensional
space M where the Chern-Simons theory is defined. Here, we think of a gauge field in four di-
mensions that is an extension of the three-dimensional gauge field of Chern-Simons theory. The
extension of the three-dimensional gauge field is, generically, non-unique, and this carries informa-
tion about topology. In fact, the four-dimensional action SP corresponds to a topological invariant;
its Lagrangian density is a total derivative13. Topological invariant actions exist only in even di-
mension, and that is the reason why Chern-Simons actions exist only in odd dimensions. The
four-dimensional action is given by

SP =
k

4π

∫
M4

Tr(F ∧F) =
k

4π

∫
M4

P, (4.34)

with P ≡ dabFa ∧Fb, F being the curvature associated to the four-dimensional gauge field that
extends the A appearing in (4.14). P ≡ dabFa ∧Fb is called the Pontryagin form, and is a total
derivative; more precisely P = dLCS, where LCS is the Chern-Simons Lagrangian of (4.14). There-
fore, if ∂M4 = M , one can, after using Stokes’ theorem, rewrite SP as an integral over M , and
one is left with the three-dimensional Chern-Simons action (4.14).
Being a topological invariant, SP takes discrete values. In fact, one can show that

∫
Tr(F ∧F) =

4π2n, with n ∈ Z. This, together with asking that the action is defined modulo 2π (so that eiS,
which appears in the path integral, is single-valued), leads to the conclusion that, for the theory to
be well defined, the Chern-Simons level has to be quantized, namely k ∈ Z [23].

5. Asymptotically AdS3 spacetimes

In this section, we will make more precise what we mean by asymptotically Anti-de Sitter
spacetimes. We will consider a set of metrics which tend to the metric of AdS3 in a specific
way. Giving such information is actually equivalent to prescribing fall-off conditions on the metric
components at large distances, the so-called boundary conditions. Before that, we need to specify
what is the boundary of our spacetime.

Our three-dimensional manifold M is taken to have the topology of a cylinder R×D2, where
R is parametrized by the time coordinate x0 ≡ τ ≡ t/l and D2 is the two-dimensional spatial mani-
fold parametrized by coordinates r, x1 ≡ ϕ , with periodicity ϕ ∼ ϕ +2π . We introduce light-cone
coordinates x± ≡ τ ± ϕ with ∂± = 1

2(∂τ ± ∂ϕ). The boundary ∂M of the spacetime at spatial
infinity (r = ∞) is thus a timelike cylinder of coordinates t,ϕ , see Fig. 2.

5.1 Boundary conditions and phase space

We adopt Fefferman-Graham coordinate system where the metric is given by (i = 0,1)

ds2 =
`2

r2 dr2 + γi j(r,xk)dxidx j, (5.1)

13A similar example is the Einstein-Hilbert action in two dimensions, which coincides with the Euler characteristic
Ξ = 1

2π

∫
M2

√
−gRd2x = 2−2g, where g is the genus of the closed manifold M2.

13
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Figure 2: We consider the manifold M
having the topology of a solid cylinder.
Its boundary is taken to be the timelike
cylinder at spatial infinity.

with the expansion, close to the the boundary r → ∞, γi j = r2g(0)i j (x
k) +O(1). We call asymp-

totically AdS3 spaces, in the sense of Brown-Henneaux [8], metrics of the form (5.1), where the
boundary metric g(0)i j is fixed as

g(0)i j dxidx j =−dx+dx−. (5.2)

These Brown-Henneaux boundary conditions are Dirichlet boundary conditions with a flat bound-
ary metric (5.2) on the cylinder located at spacial infinity.

It was shown in [25] that the most general solution (up to trivial diffeomorphisms) to Einstein’s
equations with Λ =−1/`2 with boundary conditions (5.1), (5.2) is

ds2 =
`2

r2 dr2−
(

rdx+− `2

r
L(x−)dx−

)(
rdx−− `2

r
L̄(x+)dx+

)
, (5.3)

where L(x−) and L̄(x+) are two single-valued arbitrary functions of x− and x+, respectively. In
this gauge, one recovers well known geometries when these functions are constant; AdS3 in global
coordinates is recovered when L = L̄ = −1/4, L = L̄ = 0 corresponds to the massless BTZ, while
generic positive values of L, L̄ correspond to generic BTZ geometries of mass M = (L+ L̄)/(4G)

and angular momentum J = `(L− L̄)/(4G).

Let us now translate these boundary conditions in the Chern-Simons formalism. We choose a
dreibein ea which satisfies ds2 = ηabeaeb with an off-diagonal metric ηab; see Appendix A for our
conventions. One can check that

e0 =− r√
2

dx−+
`2
√

2r
L̄(x+)dx+ , e1 =

r√
2

dx+− `2
√

2r
L(x−)dx− , e2 =

`

r
dr, (5.4)

reproduces ds2 = 2e0e1 +(e2)2, as desired. Then, the torsion free first Cartan structure equation
(4.3) determines uniquely the associated spin connections

ω
0 =

r√
2`

dx−+
`√
2r

L̄(x+)dx+ , ω
1 =

r√
2`

dx++
`√
2r

L(x−)dx− , ω
2 = 0. (5.5)

14
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The corresponding chiral Chern-Simons flat14 connections A = (ωa + ea/`) ja, Ā = (ωa −
ea/`) ja are therefore (with ja our generators)

A =

 dr
2r

`

r
L̄(x+)dx+

r
`

dx+ −dr
2r

 , Ā =

 −dr
2r

r
`

dx−

`

r
L(x−)dx−

dr
2r

 . (5.6)

A very useful trick is to notice that one can factorize out the r-dependance of the gauge fields
by performing the following gauge transformation:

a = b−1Ab+b−1db , ā = bĀb−1 +bdb−1, (5.7)

with

b(r) =

(
r−1/2 0

0 r1/2

)
. (5.8)

Indeed, one can check that the reduced connections a, ā are r-independent;

a =

(
0 ` L̄(x+)dx+

dx+/` 0

)
, ā =

(
0 dx−/`

`L(x−)dx− 0

)
.

In analogy with the on-shell reduced connections (5.7), we define the off-shell reduced gauge
connections a = aa

µ jadxµ and ā = āa
µ jadxµ as

a = b−1Ab+b−1db , ā = b̄−1 Ā b̄+ b̄−1 db̄, (5.9)

such that ar = 0 = ār. We impose our boundary conditions in the following way; they come in two
sets:

(i) a− = 0 = ā+,

(ii) a+ =

√
2
`

j1 +0 j2 +
√

2`L(x+) j0, ā− =
√

2`L̄(x−) j1 +0 j2 +

√
2
`

j0.
(5.10)

The phase space is clearly contained in these boundary conditions, with b̄ = b−1. We will
see that the first set of boundary conditions (i) will reduce the Chern-Simons action to a sum of
chiral SL(2,R) Wess-Zumino-Witten (WZW) actions. The remaining set (ii) will be used to further
reduce the WZW model to Liouville theory.

5.2 Asymptotic symmetry algebra

The asymptotic symmetries correspond to the set of gauge transformations15

δa = dλ +[a,λ ] , δ ā = dλ̄ +[ā, λ̄ ] (5.11)

14The fact that A, Ā are flat (i.e. F = F̄ = 0) is ensured by the fact that L(x−), L̄(x+) are chiral.
15The analysis of asymptotic boundary conditions can also be performed from the geometrical point of view, in terms

of the metric (or the vielbein and the spin connection). In that case, instead of studying the gauge transformations one
studies the asymptotic Killing vectors that preserve the form of the metric (5.2) at large r.
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that preserve the asymptotic behavior of the connections a, ā, namely equations (5.10). Writing the
gauge parameters λ = λ a ja, λ̄ = λ̄ a ja we find16 that the latter have to be of the form

λ = `2
(

Lλ
1− 1

2
∂

2
+λ

1
)

j0 +λ
1 j1−

`√
2

∂+λ
1 j2,

λ̄ = λ̄
0 j0 + `2

(
L̄λ̄

0− 1
2

∂
2
−λ̄

0
)

j1 +
`√
2

∂−λ̄
0 j2,

(5.12)

where the arbitrary functions λ 1, λ̄ 0 depend only on x+, x− respectively17. Writing Y ≡ `λ 1/
√

2,
Ȳ ≡ `λ̄ 0/

√
2, we find

δL = Y ∂+L+2L∂+Y − 1
2

∂
3
+Y,

δ L̄ = Ȳ ∂−L̄+2L̄∂−Ȳ − 1
2

∂
3
−Ȳ .

(5.13)

At this stage, we can already notice that L and L̄ transform in the same way as a two-dimensional
CFT energy-momentum tensor does under generic infinitesimal conformal transformations, and
one can already see that the last term, associated to the Schwarzian derivative, indicates the pres-
ence of a central extension.

The variation of the canonical generators associated to the asymptotic symmetries spanned by
λ take a very simple form in the Chern-Simons formalism [26, 27]; one has

δQ[λ ] =− k
2π

∫ 2π

0
(λ ,δa+)dϕ , δ Q̄[λ̄ ] =− k

2π

∫ 2π

0
(λ̄ ,δa−)dϕ. (5.14)

One then find that expressions in (5.14) become linear in the deviation of the fields, so that they
can be directly integrated as

QY =− k
2π

∫ 2π

0
Y Ldϕ, Q̄Ȳ =− k

2π

∫ 2π

0
Ȳ L̄dϕ. (5.15)

The Poisson brackets fulfill δY1QY2 = {QY2 ,QY1}; therefore, the algebra of the canonical gen-
erators can be directly computed from the transformation laws (5.13). Defining the modes (m ∈ Z)

Lm ≡
k

2π

∫ 2π

0
eimϕ Ldϕ ; L̄m ≡

k
2π

∫ 2π

0
eimϕ L̄dϕ, (5.16)

one finds

i{Lm,Ln}= (m−n)Lm+n +
c

12
m3

δm+n,0,

i{Lm, L̄n}= 0,

i{L̄m, L̄n}= (m−n)L̄m+n +
c̄

12
m3

δm+n,0,

(5.17)

16We compute for instance δa+ = ∂+λ +[a+,λ ] and identify the components of left and right hand sides along the
generators ja.

17This follows directly from a− = 0 = ā+.
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with central elements given by

c = c̄ = 6k =
3`
2G

. (5.18)

This shows that the charge algebra associated to the symmetry transformations that preserve
the AdS3 asymptotic form consists of a direct sum of two copies of the Virasoro algebra, with c
being the central charge. The Virasoro algebra (5.17) is the algebra of local conformal transforma-
tions in two-dimensions; it is the central extension of the Witt algebra and is infinite-dimensional
(recall that m ∈ Z). Notice that the standard redefinitions Lm→ Lm + c

24 , L̄m→ L̄m + c̄
24 change the

central terms in the algebra to c
12 m(m2−1)δm+n,0 and c̄

12 m(m2−1)δm+n,0. From the CFT perspec-
tive, the existence of a non-trivial central extension is the result of a conformal (or Weyl) anomaly
in the quantum theory. However, since this derivation was purely classical, finding a central ex-
tension at the classical level is quite remarkable. In the context of AdS/CFT, this is interpreted as
a classical bulk (AdS3) computation that describes a property of the effective action of the quan-
tum boundary (CFT2) theory. Algebra (5.17) was first shown in the seminal paper of Brown and
Henneaux [8] in 1986, and this is the reason why this result is considered as the precursor of the
AdS/CFT correspondence; notice that for this reason the central charge (5.18) is often called the
Brown-Henneaux central charge.

It is worth mentioning that in the semi-classical limit `� G (recall that the Planck length
in three dimensions is `P ∼ G), the central charge (5.18) tends to infinity. Also, notice that the
quantization of the Chern-Simons level k implies that the quantum theory seems to be well defined
only for discrete values of the dimensionless ratio `/G and, hence, discrete values of the central
charge. This discretization of c is also understood from the dual CFT point of view, since the
Zamolodchikov c-theorem prohibits the central charge to be continuous [28].

Recently, it was shown that the asymptotic symmetries of three-dimensional gravity with
Brown-Henneaux boundary conditions can be defined everywhere into the bulk of spacetime [29],
promoting in this sense the two copies of Virasoro algebra (5.17) to a new kind of symmetries,
the so-called symplectic symmetries [30]. These symplectic symmetries are large gauge transfor-
mations that are defined everywhere in spacetime, not only in an asymptotic region. This result
suggests that the dual two-dimensional CFT is not necessarily only defined at the boundary, since
the surface charges and algebra are defined on any circle located in the AdS bulk. The appearance
of symplectic symmetries is related to the existence of a presympletic form which vanishes on-shell
and is most likely conditioned by the absence of propagating degrees of freedom in the bulk.

6. A brief introduction to Wess-Zumino-Witten models

In this section, we will present an important ingredient in our discussion, the Wess-Zumino-
Witten model, which appears as an intermediate step in the connection between Chern-Simons and
Liouville actions.

6.1 The nonlinear sigma model

In quantum field theory, a nonlinear sigma model18 describes scalar fields φ i (i = 1, ...,n)
18The name comes from the fact that this model appeared for the first time in the description of a spinless meson
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as maps from a flat spacetime to a target manifold. The latter is a n-dimensional Riemannian
manifold Mn equipped with a metric gi j(φ) which depends on the fields, this is why the model is
intrinsically nonlinear. In other words, the coordinates on Mn are the scalar fields φ(x), in which
the xµ , µ = 1, ...D are the Cartesian coordinates of a flat spacetime. An action for this model is
given by

Sσ [φ ] =
1

4a2

∫
dDxgi j(φ)η

µν
∂µφ

i
∂νφ

i, (6.1)

with a2 > 0 a dimensionless coupling constant.
The so-called Wess-Zumino-Witten model19 involves a particular two-dimensional σ -model

in which the role of the target space is played by a semi-simple Lie group G and the fields are
matrix fields living on G, noted g(x). For a two-dimensional manifold Σ with coordinates x0 = τ ,
x1 = ϕ (µ,ν = 0,1), the action of this nonlinear sigma model takes the form [31]

Sσ [g] =
1

4a2

∫
Σ

d2xTr
[
η

µν
∂µg∂ν(g−1)

]
. (6.2)

The group G has to be semi-simple to ensure the existence of the trace Tr, but can be either compact
or non-compact.

This theory is conformally invariant only at the classical level. Indeed, under quantization,
the coupling a acquires a scale dependance, leading therefore to a non-vanishing β -function (the
quantum theory is in fact asymptotically free). Furthermore, even at the classical level, this theory is
not totally satisfactory since it does not possess two conserved currents that factorize into a left (or
holomorphic) and a right (antiholomorphic) part; this is the fundamental property of holomorphic
factorization of a CFT. Indeed, the equations of motion are20

∂
ν(g−1

∂νg) = 0, (6.3)

which read in light-cone coordinates x± ≡ τ±ϕ ,

∂+J−+∂−J+ = 0, (6.4)

where we have defined the currents as J+ ≡ g−1∂+g, J− ≡ g−1∂−g. We thus see that the equations
of motion derived from (6.2) do not lead to the independent conservation of the left and right
currents J±. If one is conserved, (6.4) implies that the other current has to be conserved as well.

6.2 Adding the Wess-Zumino term

In order to have two independently conserved currents, it has been observed in [32, 33] that
one has to consider, instead, the more involved action

S = Sσ [g]+ kΓ[G], (6.5)

called σ .
19It is important not to mistake the Wess-Zumino-Witten model with the Wess-Zumino model that describes four-

dimensional supersymmetric interactions. The former is usually referred to as the Wess-Zumino-Novikov-Witten model.
20Notice the useful relation δ (g−1) =−g−1δgg−1, which can be derived from δ (gg−1) = 0.
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with k an integer21, and with the Wess-Zumino term Γ[G] being

Γ[G] =
1
3

∫
V

d3xε
µνρTr

[
G−1

∂µGG−1
∂νGG−1

∂ρG
]

≡ 1
3

∫
V

Tr
[
(G−1dG)3] , (6.6)

where V is a three-dimensional manifold having Σ as a boundary, ∂V = Σ, and G is the extension
of the element g on V . Notice that there are of course several choices for a V extending Σ, leading
therefore to a potential ambiguity in the definition of Γ. In fact, for the quantum theory to be well-
defined, and depending on the Lie group considered, this can imply a quantization condition for k.
However, in the case of SL(2,R) we are interested in, this issue does not appear.

Action (6.5) may look surprising since it mixes a nonlinear sigma model in two dimensions
with the three-dimensional action (6.6). However, the Wess-Zumino term has the fundamental
property that its variation under g→ g+δg yields a two-dimensional functional. Actually, one can
show that its variation is a total derivative, leading to the result (using Stokes’ theorem)

δΓ[G] =
∫

Σ

d2xTr
[
ε

µν
δgg−1

∂µgg−1
∂νgg−1] . (6.7)

Using this result, one can see that the equations of motion derived from (6.5) read

1
2a2 η

µν
∂µ(g−1

∂νg)− kε
µν

∂µ(g−1
∂νg) = 0. (6.8)

In light-cone coordinates x± (see Appendix A for our conventions), they become

(1−2a2k)∂+(g−1
∂−g)+(1+2a2k)∂−(g−1

∂+g) = 0. (6.9)

Therefore, for a2 =−1/(2k), which implies k < 0, one finds the conservation of the current ∂+J−=
0, while for a2 = 1/(2k), one finds the conservation of the dual current ∂−J+ = 0. For the same
conditions, one can show that the beta-function vanishes [32], representing a conformal invariant
fixed point.

Taking a2 =−1/(2k), one obtains the Wess-Zumino-Witten (WZW), or Wess-Zumino-Novikov-
Witten (WZNW) action; namely

SWZW[g] =
k
2

∫
d2xTr

[
η

µνg−1
∂µgg−1

∂νg
]
+ kΓ[G]. (6.10)

This action is sometimes called non-chiral WZW action, since it does not distinguish between
left and right movers (it is symmetric under x+ ↔ x−), unlike the chiral action we will present
later on. The solution of the equations of motion derived from (6.10), namely ∂+(g−1∂−g) = 0, is
simply

g = θ+(x+)θ−(x−), (6.11)

21The name is of course not innocent, since we will see that it is indeed related to the Chern-Simons level k.
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where θ+(x+) and θ−(x−) are arbitrary functions. Equation (6.11) means that left and right movers
do not interfere between each others. One checks that the model described by (6.10) has the two
conserved currents

J− ≡ g−1
∂−g , J̄+ ≡−∂+gg−1. (6.12)

The independent conservation of the two currents implies that action (6.10) is invariant under g→
Θ+(x+)gΘ

−1
− (x−), with Θ± two arbitrary matrices valued in G. Therefore, one sees that the global

G×G invariance of the sigma model has been promoted to a local G(x+)×G(x−) invariance.

7. From Chern-Simons to Wess-Zumino-Witten

Chern-Simons theories have been shown to reduce to Wess-Zumino-Witten theories on the
boundary [34,35]. In particular, we will see explicitly in this section that the Chern-Simons theory

SE [A, Ā] = SCS[A]−SCS[Ā], (7.1)

with22

SCS[A] =−
k

4π

∫
M

Tr
[

A∧dA+
2
3

A∧A∧A
]
, (7.2)

describing (2+1)-dimensional gravity with Λ =−1/`2 reduces under our boundary conditions to
the SL(2,R) WZW model on the cylinder at spatial infinity. From now on, we will use, instead of
the level k = `/(4G), the constant

κ ≡ k
4π

=
`

16πG
. (7.3)

Again, let us emphasize the advantage of the Chern-Simons formulation: Instead of working
with a second order action in terms of the metric, we work with two flat gauge connections A, Ā. In
this section, we want to show explicitly how the first set of boundary conditions (5.10) implements
the reduction of the Chern-Simons action (7.1) to a sum of two chiral Wess-Zumino-Witten actions.

7.1 Improved action principle

At this stage, we have a small issue to solve: our boundary conditions (5.10) do not lead
to a well-defined action principle. To see that, let us first rewrite our Chern-Simons action (7.2)
explicitly in coordinates r,τ,ϕ:

SCS[A] =−κ

∫
M

dxµ ∧dxν ∧dxρ Tr
[
Aµ∂νAρ +

1
3

Aµ [Aν ,Aρ ]
]

=−κ

∫
M

drdτdϕ Tr
[
Ar(∂τAϕ −∂ϕAτ)+Aτ(∂ϕAr−∂rAϕ)+Aϕ(∂rAτ −∂τAr)

+2Aτ [Aϕ ,Ar]
]
. (7.4)

22Notice that we have changed the overall sign for later convenience.
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Integrating by parts the second and fifth terms, and keeping only the radial boundary terms (the
ones on ϕ vanish because of periodicity), one has, using Stokes’ theorem,

SCS[A] =−κ

∫
M

drdτdϕ Tr
[
ArȦϕ −Aϕ Ȧr +2Aτ(∂ϕAr−∂rAϕ +[Aϕ ,Ar])

]
+κ

∫
∂M

dτdϕ Tr
[
AτAϕ

]
, (7.5)

where the dot stands for ∂τ . The last boundary contribution being irrelevant, one can reabsorb it
in the definition of the action. Therefore, the final form for the Chern-Simons action in terms of
coordinates is given by

SCS[A] =−κ

∫
M

drdτdϕ Tr
[
ArȦϕ −Aϕ Ȧr +2AτFϕr

]
, (7.6)

where F = dA+A∧A is the curvature two-form associated to the connection. However, this action
does not have a well-defined action principle. Indeed, computing the variation of the total action
(7.1), one finds

δSE = (EOM)+2κ

∫
∂M

dτdϕTr
[
AτδAϕ − Āτδ Āϕ

]
, (7.7)

which is not zero on-shell when A− and Ā+ are required to vanish on the boundary. Therefore, in
order to have a well-defined variational principle, one must add the following surface term to the
action

I =−κ

∫
∂M

dτdϕTr
[
A2

ϕ + Ā2
ϕ

]
, (7.8)

which is such that the improved action

S[A, Ā]≡ SE + I = SCS[A]−SCS[Ā]−κ

∫
∂M

dτdϕTr
[
A2

ϕ + Ā2
ϕ

]
(7.9)

satisfies δS[A, Ā] = 0 (recall that A− = 0 = Ā+ on the boundary imply Aτ = Aϕ , Āτ = Āϕ ).

7.2 Reduction of the action to a sum of two chiral WZW actions

Now that we have an action with a well-defined variational principle, we are ready to reduce
the Chern-Simons to the WZW model. First, we will focus on the chiral sector, and then we will
do a similar computation for the anti-chiral sector to finally compose the full WZW action.

The chiral part of the improved action (7.9) is given by

S[A]≡ SCS[A]−κ

∫
∂M

dτdϕTr
[
A2

ϕ

]
, (7.10)

with SCS[A] given by (7.6). Looking at the last term of (7.6), we realize that the component Aτ of
the connection merely plays the role of a Lagrange multiplier, implementing the constraint Frϕ =

0. Therefore, assuming no holonomies (i.e. no holes in the spatial section), one can solve this
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constraint as

Ai = G−1
∂iG , (i = r,ϕ), (7.11)

where G is an SL(2,R) group element. Indeed, the solution to dA+A∧A = 0 is locally23 given
by A = G−1dG. The condition Frϕ = 0, as a first class constraint, generates gauge transformations.
One can partially fix the gauge by imposing24 ∂ϕAr = 0, which allows to factorize the general
solution into

G(τ,r,ϕ) = g(τ,ϕ)h(r,τ). (7.12)

This implies Ar = h−1∂rh and Aϕ = h−1g−1g′h, with the prime standing for the derivative with
respect to ϕ . We will assume that, as it happens for the solutions of interest, ḣ|∂M = 0. We are
now ready to reduce the chiral action (7.10). Plugging (7.11) and (7.12), the boundary term simply
reads

−κ

∫
∂M

dτdϕTr
[
(g−1

∂ϕg)2] , (7.13)

while the three-dimensional term gives explicitly (using the constraint Frϕ = 0)

SCS[A] = κ

∫
M

drdτdϕ Tr[∂rhh−1ḣh−1g−1g′+∂rhh−1g−1ġg−1g′

−∂rhh−1g−1ġ′−h−1
∂rhh−1g−1g′ḣ−h−1g−1g′ḣh−1

∂rh+h−1g−1g′∂rḣ].
(7.14)

On the other hand, one can see that, with the convention εrtϕ ≡ 1,

1
3

κ

∫
M

Tr
[
(G−1dG)3]= κ

∫
M

drdτdϕ Tr[∂rhh−1ḣh−1g−1g′+∂rhh−1g−1ġg−1g′

−∂rhh−1g−1g′g−1ġ−h−1
∂rhh−1g−1g′ḣ].

(7.15)

Integrating by parts the third term in (7.14), one finds

SCS[A] =
κ

3

∫
M

Tr
[
(G−1dG)3]+κ

∫
M

drdτdϕ Tr[−h−1g−1g′ḣh−1
∂rh+h−1g−1g′∂rḣ]. (7.16)

Finally, realizing that the last two terms are nothing but

∂r(G−1
∂ϕGG−1

∂τG) = ∂r(h−1g−1g′h(h−1g−1ġh+h−1ḣ)), (7.17)

and recalling that ḣ = 0 on ∂M , we have (using Stokes’ theorem again)

SCS[A] = κ

∫
∂M

dτdϕ Tr
[
g−1

∂ϕgg−1
∂tg
]
+

κ

3

∫
M

Tr
[
(G−1dG)3] . (7.18)

23Since we do not consider holonomies, we assume that this will also hold globally. In general, one should consider
the more general case with holonomies, which appear as additional zero-modes that one should take into account if one
wants to describe three-dimensional black holes. A treatment of holonomies was considered in [36, 37].

24In fact, this consists of a gauge fixing condition only in an off-shell formulation, since this relation is obviously
satisfied for the on-shell connection (5.6).
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Therefore, we have shown that the Chern-Simons action for the chiral copy (7.10) reduces to

S[A] = κ

∫
∂M

dτdϕ Tr
[
g−1

∂ϕg(g−1
∂tg−g−1

∂ϕg)
]
+κΓ[G].

≡ SR
WZW[g],

(7.19)

This is a chiral Wess-Zumino action action for the group element g. In light-cone coordinates
x± = τ±ϕ , (7.19) reads

S[A] = 2κ

∫
∂M

dτdϕ Tr
[
g−1

∂ϕgg−1
∂−g

]
+κΓ[G]. (7.20)

This first order action describes a right-moving group element g; this is the reason for the name
“chiral”, which means that the action distinguishes between left and right movers. Indeed, the
equations of motion are ∂−(g−1g′) = 0, whose solution is given by g = f (τ)k(x+), which is the
equation for an element moving along the x+ direction25.

Similarly, the anti-chiral action

S[Ā]≡ SCS[Ā]+κ

∫
∂M

dτdϕTr
[
Ā2

ϕ

]
, (7.21)

after solving F̄rφ = 0 by Āi = Ḡ−1∂iḠ, Ḡ(t,r,ϕ) = ḡ(t,ϕ) h̄(r, t) (with ˙̄h= 0 on ∂M ), can be written
as

S[Ā] =−κ

∫
M

drdτdϕ Tr
[
Ār

˙̄Aϕ − Āϕ
˙̄Ar

]
+κ

∫
∂M

dτdϕTr
[
Ā2

ϕ

]
. (7.22)

The only difference with the chiral action being the sign of the two-dimensional term, one
finds easily that

S[Ā] = κ

∫
∂M

dτdϕ Tr
[
ḡ−1

∂ϕ ḡ(ḡ−1
∂t ḡ+ ḡ−1

∂ϕ ḡ)
]
+κΓ[Ḡ]

≡ SL
WZW[ḡ],

(7.23)

where SL
WZW [ḡ] denotes a WZW action for a left-moving element ḡ. Indeed, the equations of mo-

tion ∂+(ḡ−1ḡ′) = 0 imply ḡ = f̄ (τ)k̄(x−).

Therefore, combining left and right sectors, we have shown that the total Chern-Simons action
is given by

S[A, Ā] = SR
WZW[g]−SL

WZW[ḡ]. (7.24)

7.3 Combining the sectors to a non-chiral WZW action

In order to recover the standard (non-chiral) WZW action (6.10), one can use the Hamiltonian
form, since the chiral and anti-chiral actions are linear and of first order in time derivative. We

25A right mover is often denoted g(x+); it is an abuse of notation to mean that g moves along the x+ direction.
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combine left and right movers as k ≡ g−1ḡ, K = G−1Ḡ; we define as well

Π≡−ḡ−1
∂ϕgg−1ḡ− ḡ−1

∂ϕ ḡ, (7.25)

and observe that

Γ[K] =−Γ[G]+Γ[Ḡ]−
∫

∂M
Tr
(
dḡḡ−1dgg−1) . (7.26)

We are allowed to change the variables from g and ḡ to k and Π. In terms of the latter, the action
(7.24) reads

S[k,Π] = κ

∫
∂M

dτdϕ Tr
[

Πk−1k̇− 1
2
(Π2 +(k−1k′)2)

]
− κ

3

∫
M

Tr
[
(K−1dK)3] . (7.27)

Eliminating the auxiliary variable Π by using its equation of motion, one finally gets

S[k] = κ

∫
∂M

dτdϕ Tr
[
2k−1

∂+kk−1
∂−k
]
− κ

3

∫
M

Tr
[
(K−1dK)3] , (7.28)

which is the standard non-chiral SL(2,R) WZW action for an element k.
Notice that the above change of variables above is not well-defined for the zero modes [38].

As a consequence, the equivalence of the sum of two chiral models with the non-chiral theory is
not valid in that sector.

8. From the WZW model to Liouville theory

So far, we have shown that the asymptotic dynamics of three-dimensional gravity with Λ < 0
is described by the (non-chiral) WZW action for SL(2,R). However, only the first set of boundary
conditions (5.10) was used so far. In this section, we will see how the use of the second set
further reduces the WZW model to eventually get Liouville field theory. Liouville theory is a
two-dimensional conformal invariant field theory whose origin can be traced back to the work of
Joseph Liouville in the 19th century. We will give a brief introduction to the classical and quantum
Liouville theories in the last section.

8.1 The Gauss decomposition

In order to perform the reduction at the level of the action, it is useful to express the WZW
action (7.28) in local form upon performing a Gauss decomposition of the form

K = e
√

2X j0eφ j2e
√

2Y j1

=

(
1 X
0 1

)(
e

1
2 φ 0
0 e−

1
2 φ

)(
1 0
Y 1

)
,

(8.1)

where X ,Y,φ are fields that depend on u,ϕ and r. We assume that the decomposition holds globally
(for subtleties in the presence of global obstructions, see [55]). The Gauss decomposition allows
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to rewrite the three-dimensional integral in (7.28) as a two-dimensional integral using the relation

−1
3

Tr(K−1dK)3 = drdτdϕ ε
αβγ

∂α

(
e−φ

∂β X ∂γY
)
. (8.2)

Therefore, one finds (keeping only the radial boundary term)

−1
3

∫
M

Tr(K−1dK)3 =
∫

∂M
dτ dϕ 2e−φ (∂−X∂+Y −∂+X∂−Y ). (8.3)

The two-dimensional integral in (7.28) can be rewritten equivalently by replacing k by K|∂M since
all factors of h, h̄ exactly cancel in the trace. Therefore, one finds∫

∂M
dτ dϕ Tr

[
2k−1

∂+kk−1
∂−k
]
=
∫

∂M
dτ dϕ

(
∂−φ∂+φ +2e−φ (∂+X∂−Y +∂−X∂+Y )

)
. (8.4)

One can then combine all terms and find that (7.28) reduces to

Sred = 2κ

∫
∂M

dτ dϕ

(
1
2

∂−φ ∂+φ +2e−φ
∂−X ∂+Y

)
, (8.5)

where all fields X ,Y,φ have been pull-backed on ∂M .

8.2 Hamiltonian reduction to the Liouville theory

The second set of boundary conditions (5.10) on the gauge fields set the currents of the WZW
model to constants. This is the well-known Hamiltonian reduction of the WZW model to Liouville
[39–41].

Let us begin by considering the left and right moving WZW currents. They are given by26

Ja = k−1
∂ak, J̄a =−∂akk−1. (8.6)

Using the definition of k, we deduce (recall that a = g−1dg, ā = ḡ−1dḡ):

J− =−k−1a−k+ ā−, J̄+ = a+− kā+k−1. (8.7)

Then, using the first set of boundary conditions (i), a− = ā+ = 0, we obtain a simple relation
between k, the WZW currents, and the gauge fields: J− = k−1∂−k = ā−, J̄+ = −∂+kk−1 = a+.
Implementing the second set of boundary conditions (ii), a+ = (

√
2/`) j1 + 0 j2 +

√
2`L(x+) j0,

ā− =
√

2`L̄(x−) j1 +0 j2 +(
√

2/`) j0, one finds

J0
− = [k−1

∂−k]0 =

√
2
`

, J2
− = 0,

J̄1
+ = [−∂+kk−1]1 =

√
2
`

, J̄2
+ = 0.

(8.8)

We thus see that the second set of boundary conditions (5.10) has for effect to set the WZW currents

26In this section, all the k symbols appearing denote the group element k = g−1ḡ, which has not to be confused with
the level, which is a constant labeled by the same letter.
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to constants. The set of constraints (8.8) is equivalent, in terms of the φ ,X ,Y fields introduced
above, to the set

e−φ
∂−X =

1
`
, e−φ

∂+Y =−1
`
,

X = 2`∂+φ , Y =−2`∂−φ .
(8.9)

Before solving these constraints in the action, one has to be sure that the latter has a well-
defined variational principle. To achieve so, one needs to add an improvement term to the action
(8.5) as follows27

Simpr ≡ Sred−2κ

∫ 2π

0
dϕ

(
e−φ (X∂+Y +Y ∂−X)

)∣∣∣τ2

τ1
. (8.10)

After inserting the constraints, we are left with the Liouville action

SLiouville[φ ] = 2κ

∫
∂M

dτ dϕ

(
1
2

∂+φ ∂−φ +
2
`2 exp(φ)

)
. (8.11)

Notice that the boundary term in (8.10) contributes as 2κ
∫

∂M dτdϕ (4/`2)exp(φ). Also, notice
that by shifting φ by a constant, one can set 2/`2 to any (positive) value.

We have therefore shown that the boundary dynamics of AdS gravity in D = 3 dimensions
is described by the two-dimensional Liouville action. Liouville theory is a conformal field theory
and, therefore, has associated two mutually commuting sets of Virasoro generators Lm and L̄m.
Then, identifying these generators with the ones appearing in the asymptotic analysis carried out
in Section 5 is very tempting. Does it mean that Liouville theory is the dual conformal theory of
three-dimensional gravity with Λ < 0? Actually not. The reduction we have presented is a classical
computation, working at the level of the actions through the prescription of specific boundary
conditions; to establish a correspondence between the two theories one would also need a full
understanding at the quantum level. Nevertheless, the connection between Einstein theory on AdS3

and Liouville theory on the boundary we have described, shows that the latter theory is, at least,
an effective theory of the holographic dual CFT2. But, before anticipating this discussion, let us
briefly introduce the Liouville field theory for the readers who are not familiar with it.

9. Liouville field theory

9.1 At classical level

The Liouville differential equation was introduced in the 19th century in the context of the
uniformization theorem for Riemann surfaces [42–44]. This is a classical problem of mathematics
that can be rephrased as the following question: In a two-dimensional space equipped with a metric
gµν , does it exist a function Ω such that a new metric g̃µν ≡ Ωgµν has a constant scalar curvature
R̃? The answer turns out to be yes. To see this, one first defines Ω = e2φ and, then, finds that the

27This boundary term comes from the fact that the constraints restrict ∂+Y and ∂−X rather than X and Y themselves.
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curvature associated to the g̃ metric is given by28

R̃ = e−2φ (R−2�φ). (9.1)

Setting the curvature R̃ to an arbitrary constant−λ (the sign is chosen for latter convenience) leads
to the nonlinear equation

R−2�φ +λe2φ = 0, (9.2)

which is the so-called Liouville equation. Finding a solution φ which satisfies (9.2) is actually
giving an answer to the uniformization problem.
Later, equation (9.2) was interpreted by Polyakov as the equation of motion of the quantum field
theory that appears in string theory when one studies how the path integral measure transforms
under Weyl rescaling. The classical equation of motion of Liouville field theory would be (9.2),
which can be derived from the Liouville action

SLiouville =
∫

d2x
√
|g|
(

gab
∂aφ∂bφ +φR+

λ

2
e2φ

)
. (9.3)

On the cylinder (or on the torus), one can always set the second term to zero. In this case, the Liou-
ville action coincides, up to field redefinition, with the one obtained in (8.11), which is consistent
with the fact that the metric at infinity is the flat metric on the cylinder.

9.2 At quantum level: stress tensor and central charge

Before closing this section, let us present some quantum properties of Liouville action. As an
exact conformal field theory, the quantum Liouville action is

Sq =
1

4π

∫
d2x
√
|g|
(

gab
∂aϕ∂bϕ +(b+1/b)Rϕ +4πµe2bϕ

)
, (9.4)

where µ is an arbitrary positive constant and b is a dimensionless positive parameter which controls
the quantum effects. Action (9.4) corresponds to a non-free scalar field theory formulated on a two-
dimensional manifold doted with a metric gab. The curvature scalar of this two-dimensional space,
R, couples non-minimally (linearly) with the field ϕ .

The value of µ can be set to 1 without loss of generality by shifting the field as follows
ϕ → ϕ− (2b)−1 log µ . This shifting is a symmetry of the classical theory as it merely generates a
total derivative term ∝

∫
d2x
√
|g|R in the Lagrangian.

One can consistently recover the classical Liouville action by setting ϕ = φ/b and 8πµb2≡ λ ;
the action above then becomes

Scl ≡ 4πb2Sq =
∫

C2

d2x
√

g
(

gab
∂aφ∂bφ +Rφ(1+b2)+

λ

2
e2φ

)
, (9.5)

which reduces to (9.3) in the limit b2→ 0 (indeed, h̄ corrections correspond here to corrections of
order b2).

28See for instance App. D in [45]
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Defining (z,z) the complex coordinates as usual in 2D CFT, one can show that the holomorphic
and antiholomorphic components of the stress tensor, Tzz and Tzz, are given by [46]

T ≡ Tzz =−(∂ϕ)2 +(b+1/b)∂ 2
ϕ,

T ≡Tzz =−
(

∂ϕ

)2
+(b+1/b)∂

2
ϕ,

(9.6)

with ∂ = ∂z, ∂̄ = ∂z̄. One can compute the central charge of Liouville by computing the operator
product expansion of two stress-tensor operators and, from this, one can read the central charge.
More precisely, one has

T (z1)T (z2) =
cL/2

(z1− z2)4 +
2T (z2)

(z1− z2)2 +
∂T (z2)

(z1− z2)
+ ... (9.7)

where the ellipses stand for terms that are regular at z1 = z2; which can be easily computed starting
from (9.6) and using the free field correlator 〈ϕ(z1)ϕ(z2)〉=−2log |z1− z2|. One then reads from
(9.7) the value of the central charge

cL = 1+6(b+1/b)2. (9.8)

Remarkably, one notices from (9.8) that there is a O(1/h̄) contribution to cL, namely that the theory
presents a classical contribution O(1/b2) to the conformal anomaly (see [47] for more details).

The spectrum of primary operators in Liouville field theory is represented by the exponential
vertex operators

Vα(z) = e2αφ(z), (9.9)

which create primary states of the theory with momentum α . The operator product expansion
between the stress-tensor and these vertex operators is

T (z1)Vα(z2) =
∆

(z1− z2)2Vα(z2)+
1

(z1− z2)
∂Vα(z2)+ ..., (9.10)

where the conformal dimension ∆ is given in terms of the momentum by

∆ = α

(
b+

1
b
−α

)
, (9.11)

and analogously for the antiholomorphic component. On the other hand, normalizable states in the
theory correspond to momenta

α =
b
2
+

1
2b

+ is , with s ∈ R. (9.12)

Therefore, the spectrum of normalizable states of Liouville field theory is continuous and satisfies

∆ =
1
4

(
b+

1
b

)2

+ s2 ≥ 1
4

(
b+

1
b

)2

. (9.13)
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This means that the theory has a gap between the value ∆ = 0 and the minimum eigenvalue

∆0 =
1
4

(
b+

1
b

)2

=
cL−1

24
, (9.14)

where the continuum starts. An observation that will be relevant later is that, in the semi-classical
limit, where the central charge becomes large, this gaps reads

∆0 ≈
cL

24
. (9.15)

Before concluding this section, let us make the following comment: As mentioned in the pre-
vious sections, through the reduction from Einstein gravity to Liouville theory we did not consider
the contribution of holonomies. This can be seen as a limitation since holonomies are important to
describe, for instance, the BTZ solution. However, it turns out that Liouville theory knows about
the holonomies. This is because the holonomies of the Chern-Simons gauge connections that corre-
spond to the different BTZ geometries can be classified in terms of SL(2,R)×SL(2,R) conjugacy
classes, and the latter are closely related to the classical solutions of Liouville field theory. While
the BTZ black holes (namely |J/`| ≤ M > 0) correspond to the hyperbolic conjugacy class of
SL(2,R), the particle-like solutions (for example, −1/(8G) 6= M < 0) correspond to the elliptic
conjugacy class of SL(2,R); the massless BTZ black hole (M = J = 0) belonging to the parabolic
conjugacy class. It happens that all these solutions can actually be gathered in Liouville theory
by studying the monodromies of the classical solutions of the field equation29 around singularities.
We will not discuss the details of this in these notes.

10. Liouville and the entropy of the BTZ black hole

In this section, we will discuss how the conformal field theory description appearing in the
boundary can be used to reproduce the BTZ black hole entropy. More precisely, we will begin
by reviewing how, by means of a Cardy formula, the conformal field theory structure appearing
through the AdS3 asymptotic symmetry manages to account for three-dimensional the black hole
entropy. Then, we will discuss some issues about Liouville field theory and the BTZ black hole
spectra.

10.1 Cardy formula and effective central charge

In a CFT2, the degeneracy of states in the limit of large conformal dimension ∆, and under
certain assumptions, is given by the Cardy formula [48]. Namely, let a (chiral part of a) CFT
with central charge c, such that its partition function on the torus is modular invariant; then, the
degeneracy of states of conformal dimension ∆, denoted ρ(∆), at large ∆ is given by

ρ(∆)≈ exp

[
2π

√
ceff∆

cyl

6

]
ρ(∆0), (10.1)

29More precisely, they are related to the solutions f of the so-called Hill equation (∂ 2 +T (z)) f = 0.
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where ∆0 is the lowest eigenvalue of L0 on the sphere, ∆cyl = ∆− c/24 is the conformal dimension
on the cylinder30, and ceff is an effective central charge, defined by

ceff = c−24∆0. (10.2)

This result is notably relevant for the applications to three-dimensional gravity. In fact, one can
show how the Cardy formula can be used to compute the entropy of BTZ black holes. This starts
with the observation of Brown and Henneaux that, as we reviewed in Section 5, the asymptotic
symmetry group of (2+1)−dimensional gravity with Λ=−1/`2 is given by two copies of Virasoro
algebra with central charges

c = c̄ =
3`
2G

. (10.3)

In [7], Strominger made use of this result to reproduce the entropy of the BTZ black hole from
the CFT2 point of view. Indeed, applying Cardy formula (10.1), which can be written

SCFT ≡ logρ(∆, ∆̄) = 2π

√
ceff∆

cyl

6
+2π

√
c̄eff∆̄

cyl

6
, (10.4)

using (10.3) as the effective central charge, and the fact that the BTZ conserved charges are given
by

∆
cyl =

1
2
(`M+ J) , ∆̄

cyl =
1
2
(`M− J), (10.5)

one finds, using relations (3.4),

SCFT =
2πr+
4G

= SBH. (10.6)

This is a remarkable result! It manifestly shows that the Cardy formula of the boundary CFT2

exactly reproduces the entropy of the AdS3 black hole (3.8).
In the derivation of the Cardy formula (10.1) one assumes that the conformal dimension ∆ is

large and the central charge c finite. Notice that this is not in contradiction with the semi-classical
limit (large c) since one can always consider large mass black holes while considering the AdS3

radius much larger than the Planck length G. In other words, we have ∆� c� 1. For different
limits in relation to the Cardy formula, in which c is large but not necessarily much smaller than ∆,
see [49]; see also [23] for a computation with small ∆ (and small c) black holes.

10.2 A caveat of the CFT spectrum and Liouville theory

Let us now discuss a subtlety in relation to the Liouville field theory spectrum. Let us begin
by noticing that what actually enters in the Cardy formula (10.4) is the effective central charge
ceff rather than c. This is related to the fact that, when deriving the asymptotic growth of states at
large ∆, one resorts to the saddle point approximation, which selects the state of lower conformal
dimension. In other words, the possibility of ceff 6= c is associated to whether the theory has a

30The shifting −c/24 is related to the conformal mapping between the Riemann sphere and the cylinder, which
produces a non-vanishing Schwarzian derivative in the stress-tensor transformation law.
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gap or not. This is exactly what occurs in Liouville theory which, as we mentioned in (9.13),
when formulated on the sphere has a minimum eigenvalue of ∆0 different from zero. Therefore,
according to (9.14), Liouville effective central charge would be ceff = cL−24∆0 = 1, and this would
be in conflict with the derivation of (10.6), which requires ceff to be the Brown-Henneaux central
charge in order to reproduce the black hole entropy.

This issue has been discussed in the literature [50–52], where it has been proposed that this is
an indication that the description of thermodynamics in terms of Liouville field theory should be
considered only as an effective description. In other words, the different steps connecting Einstein
theory and Liouville theory, which were proven to hold at the level of the actions, should not be
taken as a proof that the theories involved are equivalent beyond the semi-classical limit. In fact, the
quantum regimes of both theories can be notably different. Liouville theory exhibits indeed many
issues that make difficult to believe that it could describe three-dimensional gravity beyond the
classical approximation. Nevertheless, one can still insist with the Liouville effective description
and see how far it brings us. With this aim, let us discuss the Liouville theory spectrum in relation
to the one of AdS3 gravity in more details.

The reduction from a WZW model to Liouville can be performed at the quantum level: this
is the so-called (Drinfeld-Sokolov) Hamiltonian reduction [39, 54, 55]. Through this procedure,
one finds that the level k = `/(4G) of the WZW action and the parameter b of Liouville action are
related as follows:

b2 =
1

k−2
, (10.7)

which in the semi-classical approximation `� G, reads b2 ≈ 1/k� 1.
Since the central charge of Liouville theory is given by (9.8), one finds that, in the semi-classical
approximation,

cL ≈ 6k =
3`
2G

. (10.8)

That is, the central charge of Liouville coincides exactly with the one of Brown-Henneaux. In
addition, one observes that, in the same limit, the gap in the spectrum (9.15) also agrees with the
gap in the spectrum of BTZ black holes. More precisely, from (10.5) one finds that for the BTZ
black holes one has

∆
cyl + ∆̄

cyl = `M , ∆
cyl− ∆̄

cyl = J ; (10.9)

on the other hand, AdS3 space, which is the natural vacuum of the theory, corresponds to `M =

−1/(8G) and J = 0, which reads

∆
cyl = ∆̄

cyl =− `

16G
≈− cL

24
. (10.10)

We see therefore that the mass gap of the BTZ spectrum (namely the gap ∆0 between AdS3 geom-
etry and the massless BTZ black hole) coincides with the gap in the spectrum of Liouville theory
(9.15). This suggests to include, apart from the normalizable states that account for the black
hole spectrum, other states in Liouville theory, such as (10.10). In fact, apart from the normaliz-
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able states (9.12), in Liouville field theory there exists another set of interesting operators to be
explored [50, 53]. These are the so-called degenerate operators, which correspond to values of
momenta [46]

α =
1−n

2b
+

1−m
2

b, (10.11)

with m and n two positive integer numbers. Notice that the states (10.11) with m > 1 become
irrelevant in the semi-classical limit b→ 0. Notice also that the state with m = n = 1 corresponds
exactly to the vacuum ∆ = ∆̄ = 0, namely ∆cyl = ∆̄cyl ≈ −c/24 as in (10.10). A natural question
is to find what geometries correspond to the other degenerate states, namely those with m = 1 < n
in (10.11). According to (9.11), in the semi-classical limit theses states must correspond to gravity
solutions with charges ∆ = ∆̄≈ (1−n2)/(4b2); that is,

∆
cyl + ∆̄

cyl ≈−n2 cL

12
, ∆

cyl + ∆̄
cyl = 0, (10.12)

or equivalently,

`M =− n2

8G
, J = 0, (10.13)

with n ∈ Z>0. These states play an important role in the discussion [55] and can be shown to
represent the special cases of negative mass geometries whose angular excesses around r = 0 are
integer multiples of 2π . These exact angular excesses geometries also exhibit interesting super-
symmetric properties [56], and their relevance in higher-spin theories in AdS3 has been discussed
recently [57].

11. Other directions and recent advances

The asymptotic symmetries and dynamics of three-dimensional gravity is highly sensitive to
the choice of boundary conditions. In these lectures, we have focused on the seminal Brown-
Henneaux boundary conditions, where the metric at the boundary has no dynamics. In the last
years, there have been many works generalizing or modifying these boundary conditions. In [58],
the boundary metric is allowed to be dynamical; in [59], chiral boundary conditions were given,
while in [60, 61] the boundary metric is in a conformal gauge and light-cone gauge, respectively.
These new notions of asymptotically AdS3 spacetimes provide new potential CFT2s living at the
boundary [62–64].

Also, the scope of these lecture notes was limited to the case of pure gravity, but the study of
asymptotic symmetries and dynamics of three-dimensional AdS spaces similar to the one addressed
here can be extended to broader set-ups such as supergravity [19, 36] and higher-spin theories
[65, 66].

Before concluding these notes, let us mention an important direction that these notes have
not explored, since, motivated by AdS/CFT, we focused on the case of Anti-de Sitter spacetimes.
However, over the last years, significant effort has been made to extend holographic tools to the
case of non-AdS spacetimes. In particular, holographic properties of gravitational theories with
a vanishing cosmological constant have been investigated. In this flat holography perspective, a
rich asymptotic dynamics can be found at null infinity: the symmetry algebra of asymptotically flat
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spacetimes is the BMS3 algebra [67, 68]

i{Jm,Jn}= (m−n)Jm+n +
c1

12
m3

δm+n,0,

i{Pm,Pn}= 0,

i{Jm,Pn}= (m−n)Pm+n +
c2

12
m3

δm+n,0,

(11.1)

with c1 = 0, c2 = 3/G. Algebra (11.1) is an infinite-dimensional algebra made out of supertrans-
lations and superrotations generated by Pm and Jm, respectively. This algebra can be obtained from
the (two copies of the) Virasoro algebra (5.17) by writing the latter in terms of the generators
Pm = (Lm + L̄−m)/`, Jm = (Lm− L̄−m) and then taking the limit `→ ∞. One can also connect
through a well-defined flat-space limit [69] the phase space of asymptotically AdS and flat space-
times: the limit of the BTZ black holes are cosmological solutions whose thermodynamical prop-
erties can be understood from a holographic perspective [70, 71]. Finally, let us mention the fact
that the dual dynamics of three-dimensional asymptotically flat spacetimes at null infinity has been
shown to be a BMS3 invariant Liouville theory [38, 72] (generalized afterward adding higher-spin
fields [73] and supersymmetry [74]), through a reduction very similar to the one presented here;
one goes first through a chiral iso(2,1) WZW model and the Hamiltonian reduction reduces further
the theory to a flat chiral boson action which can be finally related to a Liouville theory.
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A. Conventions

Our conventions are such that the Levy-Civita symbol fulfills ε012 = 1, and the tangent space
metric ηab, with a = 0,1,2, is off-diagonal, given by

ηab =

 0 1 0
1 0 0
0 0 1

 .

As sl(2,R) generators, we take

j0 =
1√
2

(
0 1
0 0

)
, j1 =

1√
2

(
0 0
1 0

)
, j2 =

1
2

(
1 0
0 −1

)
,

which satisfy [ ja, jb] = εabc jc, Tr( ja jb) = 1
2 ηab (a,b = 0,1,2).
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For the two-dimensional Wess-Zumino-Witten model, we use the coordinates x0 = τ,x1 = ϕ

(µ,ν = 0,1), with ηµν = diag(−1,1) and εµν with ε01 = 1. In light-cone coordinates x± = τ±ϕ ,
we have η+− =−2 = η−+, η++ = 0 = η−−, and ε+− =−2.
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