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1. Introduction

In recent years, there has been an explosion of interest around the understanding of a very
particular numerical quantity associated with dividing a quantum system into two pieces. This set
of lecture notes will discuss this particular quantity from various points of view, and provider the
reader with the tools to compute it in the systems where it is most well-understood.

However, before plunging into details it is worth thinking briefly about why entanglement
entropy has recently become such a hot topic. There are probably many answers to this question.
One first thing to note is that quantum mechanical systems are complicated: they really have many
moving parts, far more than a typical classical system. Suppose you have N classical spins, each
of which can be either up or down: to store the full information of the system all you need to do is
store N numbers (where each number is actually either just O or 1). On the other hand, if you have
N quantum-mechanical spins, the dimension of the Hilbert space is 2. The fact that N appears in
the exponent means that the difficulty of a quantum problem scales with the number of degrees of
freedom in a drastically different way than in a classical problem. The fact that we typically care
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about systems where N is large means that a direct assault is almost always guaranteed to fail, since
there is simply too much information to keep track of. It is a fun exercise (first suggested, I think,
by Brian Swingle) to imagine filling the whole universe (i.e. the observable Hubble volume) with
standard issue hard drives and asking how many spins you can simulate in this way. The answer is
around 213.

What this really means is that Hilbert space is large and complicated. This is all the fun of
quantum field theory — it means that very interesting things can happen, new infrared states of
matter, phase transitions, emergence, etc. etc. etc. — but it means that to access all of this fun
physics we require a way to slice the Hilbert space and break it into pieces that are somehow
more manageable. Sometimes there are natural ways to do this slicing: for example, if we look
at quantum field theories that are close to free, we can think about states with only a few weakly
interacting particles, and the dynamics will not take us very far from this subspace. On the other
hand, if we care about strongly interacting systems, it is not obvious how to slice up Hilbert space
into bite-size pieces, and we should look instead for tools that will let us organize the large amount
of information that is present in Hilbert space. One such tool is the entanglement entropy.

In these notes we discuss entanglement entropy in its various incarnations. We begin with its
definition and applications in very general quantum-mechanical systems in Section 2. In Section
3 we then specialize to quantum field theory, where the tensor factorization of field-theoretical
Hilbert spaces in physical space imbues entanglement entropy with extra geometrical significance.
Finally in Section 4 we specialize further to those quantum field theories that possess holographic
duals.

Familiarity with basic quantum field theory and general relativity is assumed throughout these
notes. Some familiarity with the basic mechanics of holography will be useful for understanding
Section 4. No knowledge of string theory or advanced conformal field theory is assumed.

2. Entanglement entropy in quantum mechanics

Consider the canonical example of an entangled state, an Einstein-Podolsky-Rosen pair of
entangled spins:

|w>EPR=é<|¢>|¢>—|¢>|¢>> @.1)

The two spins are clearly correlated in some manner, but as we are dealing with a single pure
state that completely specifies the system, the information stored here is not a simple classical
correlation. Rather we say that the two spins are quantum mechanically entangled. The number
that we use to quantify how tightly the two spins are correlated is the entanglement entropy, which
we now define.

2.1 Definition

Consider a state |y) in a Hilbert space . that can be broken into a tensor product of two
subspaces: % = A ® A. We can now associate a reduced density matrix p, with the factor A by
tracing out the subfactor A:

pa = gr|w><w! 22)
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The entanglement entropy S4 associated with the tensor factor A of the Hilbert space is then the
ordinary von Neumann entropy of the reduced density matrix p4.

Sa=— ETPA log pa (2.3)

This is the object that we will study for the remainder of these lectures.
To understand what it measures, let us compute it in boringly excruciating detail for two states:
first we consider the simple product state

W) proa = | 1) 1) (2.4)

and take subfactor A to be the first spin, making subfactor A the second. Tracing out the second
spin we find pa_proq = | 1) (|, which is still an outer product of a single state, i.e. it is still pure. We
have not lost any information in the tracing out. The von Neumann entropy of this density matrix
is zero, and thus for the product state we find that S4 ;.04 = 0.

Now we repeat the exercise for the EPR state (2.1): computing the reduced density matrix we
find instead

pugrr =5 (DM + D) @5)

In this case we have actually lost some information when tracing out the second spin: the reduced
density matrix is no longer that of a pure state. Its resulting mixed-ness is a probe of how entangled
A was with A. This mixed-ness is measured by the von Neumann entropy of p4, which gives us
SA,EPR = 10g2.

In the above example, the entanglement entropy was defined starting with a pure state |y).
One can also start with a density matrix p, defining a smaller reduced density matrix the same way
as before:

pa=Trp, (2.6)

which clearly reduces to (2.2) in the special case where p is pure, i.e. when it can be written
p = |y)(y]|. Note that if p was mixed to begin with, then S4 is no longer a direct probe of the
entanglement between A and A, as p already had some von Neumann entropy to start with, and Sx
will now be “contaminated” with this. In a (standard) abuse of notion, we will still call the number
S4 the entanglement entropy.

In the rest of these lectures, we will discuss the entanglement entropy in vastly more compli-
cated situations, when we will not be able to trace out degrees of freedom so easily. It is important
to note that the entanglement entropy is completely determined by the state, which can be chosen
freely to be any state at all. However if we take the state in question to be the ground state of a
particular Hamiltonian, then the entanglement entropy can lead to considerable information about
the dynamics associated with the Hamiltonian, as we discuss below.

Before moving on, we define a related quantity called the Renyi entropy:

1
S, = g logl;‘rpg . (2.7)

These are also measures of entanglement, but do not have as many nice properties as the entangle-
ment entropy. However, as we will see below, they are often easier to compute, and if known for
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all n in a suitably nice way they can be analytically continued to obtain the entanglement entropy:
Sy =1limS, (2.8)
n—1

2.2 General properties

The entanglement entropy so defined has a number of properties. We list some of the most
commonly used properties below. For further discussion of the physical significance of the inequal-
ities below see [1].

1. If we start with a pure state, then the entanglement entropy of a sub-factor is equal to that of
its complement:
Sa—8;=0 2.9

In fact, all non-zero eigenvalues of ps and py are the same. (2.9) states that the entanglement
entropy of a pure state should not be thought of as a property of A or of A, but rather as a
property of the division of the system into two halves.

2. If we start with a mixed state p with entropy S(p), then (2.9) is modified to read instead
1Sa — S5 <Sp < Sa+ S5 (2.10)

The first inequality is called the Araki-Lieb inequality [2], and states that in a mixed state
the entropy of A differs from that of A, but the amount by which it can differ is bounded by
how impure the original state was. The second inequality is called sub-additivity, to contrast
it with:

3. Strong sub-additivity, which is the strongest set of constraints on the entanglement entropy.
Suppose the Hilbert space is a product not of two but of three or more tensor factors, requiring
a change of notation: .7 = ®;.%;,. Denote by S the entanglement entropy of sub-factor .77,
S1» the entanglement entropy of sub-factor 4 ® 743, etc. Then it can be shown that

S12+823 2> 82+ 8123 S12+823 > 81+ 83 (2.11)

These are very powerful inequalities that have a variety of physical applications, as we will
see. In fact (2.10) can be derived from (2.11). The general proof of (2.11) is fairly non-
trivial [3].

3. Entanglement entropy in field theory

The above discussion of entanglement entropy was very abstract, applying to any quantum me-
chanical system. However, when applied to quantum field theory entanglement entropy takes on a
deeper geometric significance. This happens because states in a quantum field theory are defined
with reference to a spatial manifold .#, and the Hilbert space of a quantum field theory is (typ-
ically) a tensor product of degrees of freedom localized at different points in space. This fact is
most obvious if one considers regularizing the quantum field theory with a lattice in the UV. Thus
for any region of space A C M there is a tensor factor of the Hilbert space .Z4 associated with it,
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and it makes sense to trace out things that are inside (or outside) A. Thus we can ask how entangled
a spatial region A is with the rest of the universe, etc. etc.

In a general QFT in d space-time dimensions A is a d — 1 dimensional region and its boundary
dA is a d — 2 dimensional closed submanifold that is usually called the entangling surface.

3.1 General structure

How do we compute the entanglement entropy? In general, given an arbitrary state in an
arbitrary quantum field theory, this is a somewhat difficult problem. However in any reasonable
state, the answer is always dominated by very short-range correlations across the entangling surface
[4,5]:

Sy = Arzz((zA) . 3.1)
where € is the UV cutoff and this formula applies only for d > 2. The form of this area law for
the entanglement entropy is independent of the state, as sufficiently short-range correlations in any
field theory are sensitive only to the structure of the vacuum. The result above is telling us that the
vacuum in a quantum field theory is highly entangled. See [6] for a review of area laws.

This is always the most UV-divergent term. There can be other terms that are still UV-
divergent, but less so: their precise forms depends on the dimension and are known if we assume
that we are starting with a conformal field theory in the UV. Here we will simply present results
without proof, referring the reader to the references for further justification.

The structure of the answer in 1+ 1 dimensions will be discussed in detail in the next subsec-
tion. In 2+ 1 dimensions dA is a closed curve and we have the intuitively obvious

Length(dA :
SA,(2+1) = engs() -+ finite, (3.2)

where the finite piece depends on the state (and, for example, the shape of the entangling region).
In 3+ 1 dimensions we have a subleading logarithmic divergence [7, 8]:

Area(dA
SA7(3+1) = reig) — 87t10g(8) A dZX\/il(—aEz + Clz) + finite 3.3)

where a and c are the central charges of a 4d CFT, E; is the Euler density of dA and I, a different
conformally invariant density that we do not describe here. This logarithmic term changes addi-
tively under a rescaling of the cutoff, which in a CFT has an effect that is very well-understood
and captured completely by the Weyl anomaly. Thus the structure of this logarithmic term can be
understood as being determined by the Weyl anomaly of the 4d field theory. This explains also the
absence of a logarithmic term in 2+ 1 dimensions, where there is no anomaly.

3.2 Entanglement in CFT,

There are very few general formulas for entanglement entropy. A notable exception is two-
dimensional conformal field theory, where there is a universal and celebrated formula for the en-
tanglement entropy of an interval in the vacuum [9-11].

S(L) = glog <[;) (3.4)
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where L is the length of the interval, ¢ the central charge of the CFT, and € a UV cutoff as before.
Note that the logarithmic dependence on the cutoff can be viewed as the degenerate limit of the
area law exhibited in (3.1).

There are many ways to derive this formula: the essential physics behind all of them is the
fact that in a 2d CFT there are no scales, and thus the dependence on IR quantities (such as the
length of the interval) is essentially determined by the dependence on the UV cutoff, which is in
turn determined by the Weyl anomaly, which in two dimensions is very constraining. In these notes
we will take a slightly nonstandard route and derive this formula by adapting a technique from [12]
to map the entanglement entropy to a thermal entropy.

Consider the CFT, on the Lorentzian plane with coordinates x™ = ¢ +x. We are interested in
computing the entanglement entropy of an interval A of length L, which we place at r = 0 and take

to stretch from x € [—%, %]

Figure 1: An interval A in a 2d CFT, together with its causal development D[A].

Now in a relativistic theory there is a trick to implement the procedure of tracing out the
degrees of freedom outside A. Tracing out all such degrees of freedom means that we are interested
only in the physics that is in the causal development D[A] of the interval A, as shown in Figure 1.
Thus consider performing the following coordinate transformation

L +
x* = tanh <y2> =14y (3.5)

It is easy to see that the y* coordinates only cover D[A]; thus, in the y* coordinates the trace has
already been implemented.
Next, note from (3.5) that the y “time” coordinate 7 has acquired a Euclidean periodicity:

T~TH2% (3.6)
A Euclidean periodicity in time implies that the physics in the y coordinate system is actually at a
finite temperature T = ﬁ Thus the state of the field theory in the y coordinates is actually that of
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a thermal density matrix:
p(yi) = exp(—nHT) (37)

where H; is the Hamiltonian that generates translations in the 7 coordinate.

Finally, we note that this coordinate transformation is a separate mapping of the left and right-
moving coordinates, and so is part of the symmetry group of a 2d CFT. Thus there is a unitary
mapping U that takes all operators in the x* coordinates to those in the y* coordinates: in other
words, the reduced density matrix p4 (,+) in the x* coordinates is unitarily related to the thermal
density matrix (3.7)

Py =Upa oty UT (3.8)

But the von Neumann entropy is invariant under unitary transformations: thus to determine the von
Neumann entropy of py (,+), which is interpreted as the entanglement entropy in the x* coordinates
we need only find the von Neumann entropy of p(,+), which is interpreted a thermal entropy in the
y* coordinates.

It turns out that in any 2d CFT the thermal entropy of a system at sufficiently high temperature
compared to its spatial extent is completely determined by the Cardy formula [13].! The entropy
of any 2d CFT at a finite temperature 7 on a (very long) line of length R > T~ ! is:

s="Rr (3.9)
3
where c is the central charge of the CFT. T is ﬁ: but what is R? It is the length of the interval in
the y coordinate at T = 0: but we see from (3.5) that even if we take y — o we never actually reach
the end of the interval, and thus naively R appears infinite.

This divergence in R is actually a consequence of the fact that the entanglement entropy is UV
divergent: we are attempting to include correlations all the way up to the endpoint of the interval at
x= :l:%. We may regulate the divergence by introducing UV cutoff €, which in this context means
that we study instead an interval that extends only from x € [—% + €, % — g]. In that case we find
the length in the y coordinate to be finite:

L
R =2log (£> , (3.10)
and thus the final answer for the entanglement entropy is
¢ L
S=-1 - 3.11
e () a1

as claimed above.

This answer may have seemed very slick. In reality we used conformal symmetry to transfer all
of the difficulty to a different problem, that of determining the thermal entropy of a system in (3.9).
A universal formula for the thermal entropy is very nontrivial and exists only in two dimensions,
which means that such methods can only result in a general formula for the entanglement entropy
in 2d CFT.

IThis formula is derived in many places, in particular in the notes by Blagoje Oblak in this volume. See also
Appendix A of [14] for a particularly streamlined derivation in notation similar to mine.
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We have derived a formula for the entanglement entropy of an interval on the plane. However
in 2d CFT an infinite cylinder can be conformally mapped to the plane via the exponential map
z = €": thus a cylinder is essentially equivalent to the plane, and we can also derive a formula for
the entanglement entropy on a cylinder. The details of the derivation are left to the exercises. Here
we discuss only the physical interpretation of the resulting expressions.

If the compact cylinder direction is taken to be time and have periodicity 3, then we are
studying a system with a compact Euclidean time direction, which is thus at finite temperature. We
find for the entanglement entropy of an interval of length L at a finite temperature §~!:

S(L)p = glog <£g sinh <7;3L>> (3.12)

Note that at short distances L < 8 we are probing scales much smaller than the thermal wavelength,
and the entanglement entropy reduces to the vacuum result (3.11), as it cannot tell that we are at
finite temperature. On the other hand, at large distances we find

wc L
3 B’

i.e. the entanglement entropy is becoming extensive in system size: it now obeys a volume law.

S(L>B)p ~ (3.13)

At this point the entanglement entropy is dominated by the ordinary thermal entropy arising from
the fact that the system is at a finite temperature and is thus in a mixed state. Indeed the entropy
density extracted from (3.13) agrees exactly with that arising from the Cardy formula (3.9), as it
must.

If we now take the compact cylinder direction to be space and have length R, then we are
studying an interval in the CFT vacuum on a circle. We then find the entanglement entropy to be

S(L)g = glog (:8 sin (g)) (3.14)

Again, the short-distance result agrees with that of the vacuum, but at longer distances we see that
S(L) =S(R—L), as expected from (2.9).

3.3 An application: c-theorems

We would now like to turn to an application of entanglement entropy techniques: we will prove
a c-theorem using the techniques above. This will also require us to understand some interesting
properties of the entanglement entropy in a relativistic field theory.

A 2d CFT is characterized by a number, the central charge ¢, which can be heuristically un-
derstood as a measure of the number of degrees of freedom. Now consider deforming a CFT with
central charge cyy by some relevant operator with some characteristic energy scale m — what hap-
pens in the infrared? We might expect that in general we will gap out some degrees of freedom,
and we will always have less degrees of freedom in the infrared — i.e. if we flow to a new infrared
CFT with a central charge c;g, we will have cyy > ¢jg. A simple example is a free scalar with mass
m in two dimensions, where in the UV we may ignore the mass, leading to cyy = 1 and in the IR
we do not have enough energy to excite the scalar at all, so ¢c;g = 0.

The fact that cyy > ¢r in full generality was proven by Zamolodchikov in 1986 using proper-
ties of the correlation functions of the stress tensor [15]. In this section we will follow instead the
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beautiful papers [16, 17] and present an alternative proof that uses properties of the entanglement
entropy.

First, consider an RG flow from one CFT to another, deformed by a relevant operator with
associated energy scale m. Consider the entanglement entropy of an interval of length L. Depending

1

on the relative size of L versus m™ ', we expect the entanglement entropy to be given by (3.4) with

the appropriate central charge, i.e.

L L
S(L<m)~ CUTvlog <a> S(L>m") ~ C%log <) , (3.15)

a/

where the behavior of S(L ~ m) in the intermediate region depend on the details of the RG flow. In
other words, we may define a c-function as a function of L by:

d
L)=3
c(L) dlogL

S(L), (3.16)

which effectively measures, via the entanglement entropy, the number of degrees of freedom? that
are active at the scale L. It is clear that ¢(L) smoothly interpolates from cyy to ¢jg. Our task now

is to prove that
de(L)
dL
This can be established via the strong subadditivity of the entanglement entropy (2.11). First we

<0 (3.17)

note that for three geometric regions A, B, and C, the SSA relation can be written:
S(A)+S(B) > S(ANB) +S(AUB) (3.18)

Let us first see how far we can get with this alone. Consider arranging three intervals as shown in

I~
%)
uy)

A
Y

Figure 2: Two intervals A and B arranged to overlap symmetrically. Note that the length of AN B is L, and
that of AUB is Ly, and the lengths of A and B individually are %(Ll +Ly).

Figure 2: the lengths of A and B are both LI—;LZ, the length of AUB is L and the length of AN B is
L,. Thus we immediately find the geometric relation:

s <L1;Lz> > %(S(Ll) +S(L)) (3.19)

for all possible choices of Ly, L,: in other words, we have just established that S(L) is a concave
down function as a function of L: )

d

—5<0 3.20
dr?- — (3-20)

2This idea has been generalized to higher dimensions in [18].
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This is a useful relation that holds for any translationally invariant system: however, it is not yet
strong enough to imply (3.17): as ¢(L) is a logarithmic derivative of S(L), we require it to be
concave down as a function not of L but of log L.

Figure 3: An interval and its causal development: note that the two Cauchy slices ¥ and ¥’ have are related
by a diffeomorphism £ and thus have the same information (and entanglement entropy) in a
Lorentz-invariant theory.

Luckily, we have another symmetry at our disposal: Lorentz invariance. In a Lorentz-invariant
theory the entanglement entropy of an interval A should not really be thought of as a function of the
interval A, but rather of its causal diamond D[A], as is familiar from Figure 3, as any Cauchy slice on
the same interval can be related by a unitary transformation implementing a diffeomorphism, and
so has the same information. This actually has practical consequences. Let us consider arranging
two intervals A and B as before, but now on two different time slices as in Figure 4. The geoometry
is arranged so that the proper lengths of interval A and B are both \/LL,.

Now consider the entanglement entropy of S(AUB). The causal diamond of AUB is equivalent
to the causal diamond of the interval extending from a; to b, which has proper length L. Thus we
have S(AUB) = S(L,), and similarly, S(ANB) = S(L,). The SSA relation (3.18) now becomes

S(VIER) > 5 (S(La) + 8(02)) (21
This is a stronger relation than (3.19), as it implies that S(L) is a concave down function as a
function of log L:

d2
—5<0 3.22
d(logL)?” — 7 (3-22)

which is equivalent to the monotonicity relation (3.17) that we set out to prove. In other words,
we have used entanglement entropy to prove the c-theorem from very fundamental principles: the
structure of quantum mechanics (used in proving SSA) and Lorentz invariance.

What of higher dimensions? In 2+ 1 dimensions we have the so-called F-theorem [19-21],
where F is a number defined to be the partition function of an S°:

F=—1logZ($?) (3.23)

10
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a1 e by

a2

Figure 4: Two intervals A and B, now boosted relative to one another. The proper lengths of A and B both

are \/L1L,.

Considerable evidence led to the conjecture that F' should decrease under RG, but an analog of
Zamolodchikov’s proof remained elusive.

Interestingly, however, F can be related to the constant term in the entanglement entropy of
a circular disc on the vacuum on R? (3.2). A higher-dimensional generalization of the arguments
used above —resting on SSA and Lorentz-invariance — can now be used to show that ' decreases as
we move to the infrared, establishing the F-theorem [22,23]. At the moment this is the only proof
of the F'-theorem, demonstrating the power of entanglement-based techniques.

Going up one dimension higher, there are two central charges (called a and c) that characterize
a (3+1)-d CFT. It was recently shown by Komargodski and Schwimmer that there is an a-theorem,
in that the central charge conventionally called a also decreases monotonically under RG [24].
The proof uses general properties of conformal invariance and effective field theory. a also ap-
pears in the entanglement entropy in 3 + 1 dimensions (see (3.3)), but at the moment there is no
entanglement-based proof of the a-theorem.

3.4 Replica trick

Before moving on to the manifestation of entanglement entropy in gravity, we present a a
framework to compute entanglement entropies from a path integral. This is done by the replica
trick. We will first illustrate it in the simplest possible example.

Consider for concreteness the quantum field theory of a free scalar field in 1 + 1 dimensions,
defined through a Euclidean action S[¢ (x)]. The details of this Lagrangian will not be important at
all. We will first develop a framework to understand the reduced density matrix of a spatial region
(in this case an interval) A from path integrals involving the Euclidean action.

We first consider a simpler problem. In quantum mechanics where the dynamical degree of
freedom is typically a particle position x, we are used to the idea that for every state |y) there is a
wave-function defined as y(x) = (x|y). In quantum field theory the dynamical degrees of freedom
are instead space-dependent fields ¢ (x): thus for every state |y) in the quantum field theory we

11
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have a wave-functional/
Yo (x)] = (¢(X)|y) (3.24)

This wave-functional is a map from the space of fields ¢ (X) to the complex numbers. In quantum
field theory this is a somewhat more cumbersome and consequently less familiar object than in
quantum mechanics, but it will be useful for our purposes.

Let us now consider the vacuum of our quantum field theory. How do we construct the ground-
state wave-functional ¥o[¢ (X)]? This can be done by performing the following path integral:

Vl§)] = [120g(e-09-0 exp(~S[8le<0) (3.25)

In other words, to determine the value wave-functional evaluated at a particular field configuration
¢ (%), we should perform the Euclidean path integral over half of the Euclidean plane (i.e. that with
7 < 0), with the boundary condition that at T = 0 the dynamical field ¢(7 = 0,X) = ¢(¥). The
integration over all negative Euclidean times has the effect of suppressing all states that are not the
vacuum, and thus the only state that ultimately contributes is the Euclidean vacuum in the quantum
field theory.

We turn now to the reduced density matrix ps for a spatial region A in the vacuum. In the
wave-functional picture this is a map from the space of two fields (one for each index of the matrix)

to the complex numbers. From its formal definition in terms of the trace, it is:

pa(@1(Xa); 92(%a)) = /[-@sz)}%[(l)l (¥4); 0 (%) [¥o[92(Xa); ¢ (X)) (3.26)

where we have introduced some notation: X4 means that X € A, the two arguments in Wo[@; (¥4); ¢ (¥7)]
simply indicate that the wave-functional depends on fields both inside and outside A, and the path
integral above is over all fields localized in A, thus implementing the trace over all degrees of
freedom outside A.

Now by using (3.25) to evaluate each wavefunctional factor in (3.26), we see that there is
actually an elegant functional integral representation for the reduced density matrix. The path
integration over all points outside A sews together the two path integrals (one from each wave-
functional factor) to result in

P(01(E):62(50) = [ 170)9,0 exp(~S[0)) (327

where now we integrate over the entire Euclidean plane but with a cut made along the interval A,
with the following boundary conditions along the cut:

P(T=0",%4) = ¢1 (%) P(T=0",%1) = §2(¥Xa) (3.28)

Finally, from here we may evaluate the Renyi entropy (2.7):

1
S, = — ] log Tr(p") . (3.29)
Now the n-fold product of p” takes the form in terms of functional integrals:

Tr(p") ~ /[9¢1,2...n(55A)]P(¢1(XA);¢2(XA))P(¢2(XA);¢3(XA)"'P(¢n(XA);¢1 (xa))  (3.30)

12
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This has the effect of gluing together n different copies of the original manifold (i.e. the “replicas”)
along the cut A; thus all we need to do to compute the Renyi entropy is evaluate the partition
function on a complicated manifold that we will call .#,, as shown in Figure 5. Now, if we
can do this analytically as a function of n, then we can analytically continue n — 1 to obtain the
entanglement entropy:

1
Sy =1imS, = —lim log Z[.#,) (3.31)
n—1 1

n—1ln—
This may seem like a somewhat suspicious set of manipulations: the difficulty in justifying the
analytic continuation earns this procedure the disreputable name replica frick rather than (for ex-
ample) replica method. Nevertheless, as far as this author is aware, whenever this procedure can be
implemented in an entanglement context it gives trustworthy results. It should also be clear that the
restriction to a single scalar field was only for notational convenience, and the final result (3.31)
applies in full generality.

~ ~
~ ~
~ ~

Figure 5: Schematic view of manifold .#, for n = 3. Color coding indicates how the edges of consecutive
sheets of the manifold are glued together.

Exercises

1. Find the analog of (3.5) for the case of (1): an interval in a 2d CFT at finite temperature 3!
but on an infinite spatial line, and (2): an interval in the vacuum of a 2d CFT compactified
on a circle of circumference 27. Use it to derive (3.12) and (3.14).

2. Find the analog of (3.5) for a sphere in the vacuum of a a CFT,; with d > 2. Why can we not
use the formula we find to derive a general formula for the entanglement entropy of a sphere
in CFTd?

4. Entanglement entropy in gravity

Having given a whirlwind tour of some results in entanglement entropy in field theory that
this particular author feels are particularly interesting, we now move to a new topic: entanglement
entropy in holography.
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Holographic duality is the surprising fact that certain quantum field theories are precisely
equivalent to certain theories of quantum gravity that live in one higher dimension [25]. This is
both conceptually profound and practically useful: it is conceptually profound because it promises
to allow the somewhat amorphous set of ideas that is quantum gravity to be precisely defined in
terms of much more well-understood objects, i.e. quantum field theories. It is practically use-
ful because it is a weak/strong duality: when the quantum field theory is strongly coupled, the
dual gravitational theory is weakly coupled and classical, effectively mapping strongly correlated
quantum field theory problems to exercises in classical geometry.

There are many excellent reviews on AdS/CFT (see e.g. [26-29]). In what follows we will
assume some basic familiarity with the subject and do not review how to do basic AdS/CFT com-
putations.

We do briefly re-emphasize the philosophy. Essentially one considers a gravitational theory
defined on an asymptotically AdS space: by performing measurements or operations at the bound-
ary of AdS, one can compute field-theory observables. The details of course depend on what one
wants to compute. For example, if we are interested in studying a field theory partition function Z
evaluated on a d-dimensional Euclidean manifold .#, then the central formula of AdS/CFT might
be summarized as

ZCFT[%d] = Zstring [gd+1] — €Xp (_Sgravity [ngrl]) “4.1)

where g1 is a d 4 1-dimensional manifold whose boundary (defined in the sense of AdS/CFT) is
M. Here Zgying is a somewhat metaphysical object that is the “string theory partition function”,
which reduces under favorable circumstances to a gravity partition function that can sometimes
be approximated by an on-shell action. Manipulations of this and similar formulas allow one to
compute boundary theory correlation functions, thermodynamics, and entanglement entropy.

4.1 Ryu-Takayanagi: minimal areas and entanglement

In fact, it turns out that there is a beautifully simple formula due to Ryu and Takayanagi [30,31]
for the entanglement entropy S(A) associated with a spatial region A in the field theory. We will
prove it in the next subsection: for now, we simply state that the entanglement entropy (in a theory
of Einstein gravity) is simply given by the area of the bulk minimal surface my that hangs down
into the bulk and ends on the boundary of A, as shown in Figure 6.

Sa = 4éNArea(mA), (4.2)
where Gy is the effective bulk Newton’s constant. In this formula it should be understood that
we should always pick my so that it can be continuously deformed to the boundary region A: this
constraint is called the homology condition and will be important in what follows.

Note that this prescription relates two very primitive objects on the two sides of the duality:
on one side, we have entanglement entropy of a spatial region, which requires only the structure of
quantum mechanics and spatial locality to define; on the other, we have minimal areas, or geometry,
one of the most basic concepts in any theory of gravity. The existence of this relation suggests that
the entanglement structure of the dual field theory is the correct way to organize our understanding
of holography. This idea has been at the heart of much recent work into “constructing spacetime
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Figure 6: The Ryu-Takayanagi prescription: a minimal surface hangs down into the bulk and measures
entanglement entropy.

from entanglement”. I will not attempt to give a complete list of references here, but foundational
papers on this subject include [32,33].

This formula also makes it somewhat easier to visualize entanglement, by relating a some-
what abstract quantum mechanical object to something as intuitive as a minimal area. We now
discuss some simple examples, to illustrate how the 2d CFT results discussed in Section 3.2 are
geometrized in AdS3/CFT, holography.

In AdS3 holography we have in the bulk a solution to Einstein gravity with a negative cosmo-

_ 1 3 2
S = 4nGN/dx\/§(R £2> (4.3)

where the AdSj radius / is related to the central charge of the dual field theory by [34]

L4
- 2GN

logical constant

c 4.4)
We begin by studying the dual field theory defined on the plane R?. In this case the bulk spacetime
is given by AdS3 in Poincaré coordinates:

2
ds? = (2 <r2 (—d*+dx®) + d:;) : 4.5)

where the boundary is at r — . In 24 1 bulk dimensions, minimal “surfaces” are actually bulk
geodesics: thus consider a geodesic with its endpoints separated by a distance L in x at the AdS
boundary, which we take to be at some large value of » = r,. The computation of its proper length
is a simple exercise in geometry, after which we find the entanglement entropy to be

¢ L
S(L) = - log (L) = %log <8> : 4.6)

where in the second equality we have used (4.4) to express the bulk AdS radius in terms of the
central charge, as well as identifying the maximum value of r, with the UV cutoff £ ~!. We see that
the UV divergence of the entanglement entropy in field theory arises geometrically from the fact
that the AdS boundary is infinitely far away from all points in the bulk. In fact, it is easy to see that
even in higher dimensions, the divergence from arising from the fact that the boundary is infinitely
far away will always result in an area law of the form (3.1).
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The answer grows logarithmically with the separation L at the boundary because as we make
the interval distance bigger, the minimal geodesic hangs deeper and deeper into the bulk, and AdS
is smaller in the deep bulk, as is clear from (4.5). Thus the answer grows more slowly than linear
inL.

Consider now heating the field theory up to a finite temperature 7. The finite temperature state
is dual to the planar BTZ black hole, which has metric

dr?
22 202 2 2,2
ds= =" (—dt (r"—ri)+ridx —i—M) . 4.7

Here r is the location of the black hole horizon, and the field theory temperature is

I+
= (4.8)
From a straightforward computation we can verify that the minimal geodesic distance is indeed
given by the expected expression (3.12). Note that as we make the interval length longer and
longer, eventually the geodesic dips deeper into the bulk, approaching the horizon at r = r. How-
ever, it never penetrates the horizon; instead it hangs just outside it, essentially measuring the
proper distance along the horizon. This is simply the thermal entropy density of the black hole
multiplied by L , via the usual Bekenstein-Hawking formula. Thus we see that the volume law of
the entanglement entropy (3.13) appears in a very natural way.
Finally, consider studying the dual field theory on a cylinder of circumference 2. The appro-
priate bulk spacetime is now AdS in global coordinates:

2

d
ds* = (? <—d;2(r2 + 1)+ r2dx® + - :L 1) , (4.9)

and the geodesic distance is again given by (3.14). Note from Figure 7 that the assertion that
Sa = §7 takes on a simple geometric form: if there is no obstruction in the interior of the spacetime,
then in computing the entanglement entropy of A or of A, we are computing the length of the same
minimal area (i.e. my = my).

Figure 7: The minimal geodesic used to compute the entanglement entropy of an interval A, and its
complement A. Note that my = my.
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What if there is an obstruction, e.g. a black hole in the interior? Now the homology condition
plays a role: we see from Figure 8 that the bulk minimal surfaces m, and my corresponding to A
and to A are different, as we cannot deform the minimal surface through the black hole horizon.
Thus now generically S4 # S7. This makes sense, as the state dual to the black hole is the thermal
density matrix, which is a mixed state.

Figure 8: Minimal geodesics used to compute the entanglement entropy of an interval A, and its
complement A in the presence of a black hole. Note my # .

Let us turn now to the strong sub-additivity condition, written in the geometric form (3.18):
S(A)+S(B) > S(ANB)+S(AUB) (4.10)

As mentioned earlier, the proof of this inequality for a general quantum mechanical system is fairly
intricate. However, in a holographic theory it is almost an embarrassingly simple argument [35].
We present the pictorial proof in Figure 9.

Figure 9: Pictorial proof of strong sub-additivity. Solid grey lines represent S(A) + S(B). Dashed grey lines
represent S(AUB) 4+ S(ANB). Now continuously deform the dashed lines into the solid ones,
thus making them touch at a single point and creating a kink there without breaking the lines. The
length of the deformed dashed lines is now equal to that of the solid lines; but as the original
dashed grey lines were minimal, this procedure will necessarily increase their length. We
conclude that S(A) 4+ S(B) > S(AUB) + S(ANB).
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4.2 Sketch of proof using replica trick

In this section we present a proof of the Ryu-Takayanagi prescription, following [36]. At the
moment the prescription can be proven only for a certain set of states — those that can be obtained
from a Euclidean path integral. Importantly, this excludes all time-dependent states, which are
different in important ways that will be discussed later on.

We first discuss the basic idea. Recall from Section 3.4 that the replica trick allows us to ex-
press the entanglement entropy of a region in field theory in terms of a partition function evaluated
on an n-sheeted d-manifold .#,,, (3.31)

Sp = 1in} S, = —lim (log Z[ A, — nlog Z].#1]) 4.11)
n—

n—1n—1

where we have included an extra term to account for the possibility that Z[.#,] (i.e. the original

partition function®) has not been normalized to 1. Now to compute Z[.#,] from AdS/CFT, we

need to find a d + 1-dimensional bulk geometry g, that is a solution to Einstein’s equations and

asymptotes at the AdS boundary to the d-manifold .#,. Via the AdS/CFT correspondence we then
have

Z[AMy) = exp (—S[gw)]) , (4.12)

with S[g(,] the Einstein-Hilbert action, evaluated here on the bulk geometry. If we can find this
action for all n we can then analytically continue to n = 1 to determine the entanglement entropy.

Given that .#, is very complicated, implementing this procedure for all » may seem impos-
sibly complicated — remarkably, however, it can be explicitly performed in some cases, including
AdS3/CFT; [37,38] and spheres in the vacuum of a CFT, for any d [39]. We will take a different
route here: we will instead analytically continue n — 1 directly in the bulk and attempting to phys-
ically interpret the resulting geometry. It was argued in [36] that in the n — 1 limit the essential
data needed to characterize this bulk geometry is really simply that of a minimal surface my that
probes the original n = 1 geometry.

To understand this, we follow [40] in a slight reformulation of the original argument. Consider
first the bulk geometry g(,) for integer n. This geometry is regular in the interior. It also admits
a natural Z, action: this Z, cyclically permutes the n sheets of ., at the boundary, and can be
extended naturally into the bulk. Importantly, the Z, has fixed points: at the boundary the fixed
points of this action are the entangling surface dA, and this locus of fixed points will be extended
into the bulk to constitute a codimension 2 surface that we call mj4.

Consider now the orbifold geometry &,y = gn /Zy, formed by identifying points that are related
by the Z, action. As g(,) was regular in the interior, its orbifold will be singular at the fixed points
of the Z, action, i.e. on the surface my4, where it will have a conical deficit of angle 27 (1 — %)

Assuming the replica symmetry is unbroken, the action of g, will be

Thus we can reformulate (4.11) in the holographic context as

S4 = lim
n—ln—

(I8 —Slg)) (4.14)

3In other words, we are allowing for the possibility that the original density matrix p4 is not correctly normalized
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So far everything is well-defined, as  is still integer.

We now take the bold step of analytically continuing » — 1 in the above formula and keeping
track only of the information to first order in n — 1. We assume that in this treacherous domain we
may still define g(,) as a geometry containing a codimension-2 surface m,, along which we have a
conical deficit of angle 27 (1 — %) ~ 2me with € = n— 1. We then need only evaluate:

Sa = 0(S[gw)) (4.15)

at € = 0, i.e. the linear part of the variation of the action with the opening angle €.

We now note that it may seem dangerous to evaluate the action of a singular geometry §,):
how do we treat the singularity? Should we supplement the action with boundary terms? If we
want (4.13) to hold we should not add any further boundary terms to the action, as g(,) was smooth
and had no boundary terms there. Thus we should simply evaluate the original Einstein-Hilbert
action on a conical geometry, integrating up to the site of the defect. For concreteness, we put
down coordinates near the site of the defect as

ds* = p 2 (dp* + p*dt?) + (gij + Kaijx“) dy'dy’ + - - (4.16)

where the defect is at p = 0, (p,7) and (x',x?) parametrize the same two-dimensional space or-
thogonal to my, and y’ parametrize the directions along my, and we have ignored higher order terms
in x“. Note that the K,;; are precisely the extrinsic curvatures of m,. The geometry is singular at
p =0 unless € =0.

There are multiple ways to evaluate the action: their equivalence is spelled out in [36, 40].
An aesthetically pleasing method is the following: consider introducing a small artificial cutoff in
p at p = a, and for p < a we close off the inside of the geometry with a smooth geometry that
smoothens out the conical deficit. The full action is

We are interested in computing lim,_,¢ d:S(p > a) }6:0. Now at € =0, S,,; is the action of a smooth
solution to the Einstein equations with no boundaries: thus its variation with respect to any bulk
fields (and in particular with respect to the 1-parameter variation of bulk fields induced by a chance
of €) vanishes. We then conclude that

9eS(p > a)|,_,=—0:S(p < a)| (4.18)

e=0

However the action S(p < a) is now just the action of a regulated cone in Einstein gravity. This is
easy to compute (see e.g. [41]) and the formula is well-known. If the Einstein-Hilbert action is

!
G A 2R 4.19
167Gy / Ve (4.19)

then the action of a cone with opening angle € along a surface my is precisely proportional to this
opening angle:

£
Scone = _@Area(mA) . (4.20)
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Using this to evaluate d.S(p < @) and then inserting the answer into (4.15), we conclude that the
holographic entanglement entropy is precisely:

1
Sa = EArea(mA) (4.21)

We are not yet entirely done: while we have shown that the entanglement entropy is given by the
area of my, we have not yet provided an algorithm to determine my itself. This can be done by
studying the Einstein equations near p = 0 in the coordinates (4.16): one finds that they possess
intractable singularities near p — 0 unless the traces of the extrinsic curvatures K,;; vanish:

K, =0 (4.22)

However, this is precisely the condition for the surface my4 to be minimal. This completes the proof.
It should be clear from the derivation that this proof relies heavily on the idea of the Euclidean

path integral, and thus only works for states that can be prepared via such a path integral. Neverthe-

less, this is sufficient for many of the states that we are interested in for holographic applications.

4.3 Extensions

Here we discuss very briefly some extensions of the simplest situations discussed above.

4.3.1 Time dependence

Everything discussed above essentially applies only to static situations with no time depen-
dence. Nevertheless, it is clearly of great interest to understand entanglement entropy in time-
dependent situations (e.g. the formation of a black hole, which is dual to thermalization in the
boundary field theory). A natural covariant extension of the Ryu-Takayanagi formula to the time-
dependent case has been proposed [42]

SEE = 4(1;NArea(eA), (423)
where e4 is now the covariant bulk extremal surface ending on the boundary at dA. At the moment
there is no proof for this formula, but it has been applied in many settings and there is a widespread
expectation that it is correct.

While this seems very natural, it is important to emphasize that it is conceptually rather dif-
ferent: for example, in a Lorentzian setting, there is actually no notion of a minimal surface, as
wigglings of the surface in the time direction can arbitrarily reduce its covariant area. Thus the
object appearing above is extremal rather than minimal. This has consequences: for example, the
proof of strong subadditivity for the covariant entanglement entropy [43] is quite intricate and not
at all a kinematic triviality like the one for the static case discussed above. Importantly, one finds
SSA only when the bulk geometry satisfies a null curvature condition (meaning that on-shell the
bulk matter supporting the geometry should satisfy a null energy condition).

4.3.2 Higher derivative corrections to gravity

The discussion so far has applied only to the simplest limit of holography, that where we
consider only classical gravity in the bulk, and furthermore only the leading term in an expansion
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of the bulk action in powers of derivatives (i.e. only the Ricci scalar term in the gravitational
action). It is helpful to remind ourselves what this corresponds to on the field theory side. For the
simplest example of the duality between Type IIB string theory on AdSs x S°, and .#" = 4 Super
Yang-Mills, we have the following relations between bulk and boundary quantities:

¢ A
- = 424
0, 5T aan (4.24)

i

A

where A and N are respectively the field theory t’Hooft coupling and rank of the gauge group, ¢
is the bulk AdS radius, ¢; is the string length, and g is the bulk string coupling. Thus the N — oo
limit corresponds to turning off the bulk string coupling and thus discussing a classical theory in
the bulk. Further taking A — oo corresponds to making the classical theory one of gravity and not
of strings.

Thus moving away from the strict A — oo limit corresponds to allowing higher-derivative
corrections in the bulk, that are suppressed by powers of the string length, e.g. schematically

/ dxy/—g (R+ R + ) (4.25)

4717G

where R* refers to a term involving four powers of the Riemann tensor, etc. Their precise form
can be determined from string theory if desired: thus it is of intrinsic interest to understand how
entanglement entropy behaves in the presence of such corrections to the bulk effective action

This problem has been studied by [40,44] by implementing the algorithm of [36] to higher-
derivative actions, resulting in a corrected formula for entanglement entropy that includes the con-
tributions of higher order terms. Their result applies to any diffeomorphism-invariant theory of
gravity and can be written schematically as

52.,%
_ d-2 .
Spp = / d f( + spsrk K) (4.26)

Here the answer is expressed in terms of derivatives of the bulk Lagrangian .Z with respect to the
bulk Riemann tensor, and K refers to the extrinsic curvature of the bulk “minimal” surface, which
we continue to call m,4 (and where the condition to be satisfied by this surface is now modified, and
it is thus no longer precisely minimal). For Einstein gravity the bulk action is linear in the Riemann
tensor, and only the first term contributes, resulting in the usual area formula.

It is interesting to note that the functional to be evaluated on my4 is not equivalent to the func-
tional appearing in Wald’s formula for the thermal entropy of a black hole in a higher derivative
theory of gravity [45,46]. The difference is the second term involving the extrinsic curvatures,
which vanish when the formula is evaluated on the event horizon of a black hole.

Finally, we should point out that there is an important class of higher-derivative corrections
that are not captured by the above formulas: those that involve bulk gravitational Chern-Simons
terms, which are only diffeomorphism-invariant up to a total derivative and so cannot be written
as functions of a bulk Riemann tensor. The presence of such terms in a bulk gravitational action
indicate that the dual field theory suffers from gravitational anomalies, i.e. a breakdown of stress-
energy conservation [47,48]. The entanglement entropy in such theories possesses interesting
additional structure, and has been studied holographically in [49,50] and field-theoretically in [51—
54].
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4.3.3 Quantum bulk corrections

We turn now to including quantum effects in the bulk gravitational theory: from (4.24) we see
that this corresponds to studying the dual field theory at finite N. Thus one now needs to include
effects arising from the quantum fluctuations associated to the dynamical fields in the bulk, viewed
as a low-energy effective theory.

There are multiple ways to study this quantity: for example, if the form of the bulk manifold
8(n) that asymptotes to an n-sheeted replica geometry ., is known, then it is possible to directly
compute functional determinants in the bulk and obtain explicit answers for the Renyi entropies,
which can then (hopefully) be analytically continued to n = 1 to obtain the entanglement entropy.
This program has been initiated by [55] in the case of AdS3/CFT;.

However, there is also an expectation for the general form of the one-loop correction to the
entanglement entropy itself. [56] argue that the answer takes a very elegant form. Note first that the
bulk minimal surface m, divides the bulk into two pieces; thus one can consider the bulk region By
bounded by m4 and the boundary region A. One can thus consider the bulk entanglement entropy of
dynamical fields in the bulk Sgg puk(s,)- The key correction to the boundary entanglement entropy
is argued to be this bulk entanglement itself, i.e.

Sa = 4(1;NArea(mA) + SEEbulk (Ba) + Kiocal (m4) (4.27)
Here Kjocal(m4) is associated with the renormalization of bulk dynamical fields and is a set of local
terms evaluated on my whose form is discussed in [56].
It is intriguing to note that bulk geometric areas and bulk entanglement together conspire
to give boundary entanglement, and this author feels that this formula is likely to have a deep
significance.

Exercises

1. Re-derive in a holographic context the universal CFT findings (3.12) and (3.14) by studying
appropriate geodesics on the BTZ black hole (4.7) and global AdSs (4.9).

2. Consider the BTZ black hole but now with a compactified spatial coordinate x ~ x + 27.
Consider the entanglement entropy of an interval of length L < 27. What happens as the
length L is varied from very small lengths up to 27? Discuss the relationship between your
findings and the Araki-Lieb inequality (2.10). The physics that you have just discovered is
discussed in [57].

3. Study the Einstein equations near the tip of a singular cone given by (4.16) and verify that
regularity of the resulting equations requires the vanishing of the extrinsic curvatures (4.22).

5. Conclusion

We have reached the end of our whirlwind tour of the theory and applications of entanglement
entropy.
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It is worth emphasizing at this point that entanglement entropy is — while undoubtedly great
fun in various ways — merely a novel way to understand and visualize the structure of quantum
correlations. While it is likely to give us a new way to organize physics, this author sometimes
feels that it should perhaps be thought of as being something like “energy”. The energy of a state
is something that is often useful to calculate, and everyone should know how to do it. Separating
physics into low-energy and high-energy is a very fruitful way to think about a wide variety of
physical systems, and all physicists should develop intuition as to how to do this. Yet nevertheless
very few physicists would say that they study “energy” itself: rather the virtue of “energy” is that
it tells us how to organize our thinking.

It seems likely that “entanglement” will play a similar role in the physics of the 21st century, in
telling us how to organize and slice the incredible complexity that is present in quantum mechanical
systems.

It remains, of course, up to the readers of these notes to figure out how to use it to do so.
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