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1. Introduction

Different from the other more formal topics in this summer school, the emphasis of these
lectures is on the applications of AdS/CFT correspondence and the involved numerical techniques.
As theoretical physicists, we generically have a theory, or a paradigm as simple as possible, but the
real world is always highly sophisticated. So it is usually not sufficient for us to play only with our
analytical techniques when we try to have a better understanding of the rich world by our beautiful
theory. This is how computational physics comes in the lives of theoretical physicists. AdS/CFT
correspondence, as an explicit holographic implementation of quantum gravity in anti-de Sitter
space, has recently emerged as a powerful tool for one to address some universal behaviors of
strongly coupled many body systems, which otherwise would not be amenable to the conventional
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approaches. Furthermore, applied AdS/CFT has been entering the era of Numerical Holography,
where numerics plays a more and more important role in such ongoing endeavors. These lectures
are intended as a basic introduction to the necessary numerics in applied AdS/CFT in particular for
those beginning practitioners in this active field. Hopefully in the end, the readers can appreciate
the significance of numerics in connecting AdS/CFT to the real world at least as we do.

The outline of these lecture notes is the following. In the next section, we shall first present
a poor man’s review of the current status for quantum gravity, where AdS/CFT stands out as the
well formulated quantum gravity in anti-de Sitter space. Then we provide a brief introduction to
applied AdS/CFT in Section 3, which includes what AdS/CFT is, why AdS/CFT is reliable, and
how useful AdS/CFT is. In Section 4, we shall present the main numerical methods for solving
differential equations, which is supposed to be the central task in applied AdS/CFT. Then we take
the zero temperature holographic superfluid as a concrete application of AdS/CFT with numerics
in Section 5, where not only will some relevant concepts be introduced but also some new results
will be presented for the first time. We conclude these lecture notes with some remarks in the end.

2. Quantum Gravity

The very theme in physics is to unify a variety of seemingly distinct phenomena by as a few
principles as possible, which can help us to build up a sense of safety while being faced up with the
unknown world. This may be regarded as another contribution of the unification in physics to our
society on top of its various induced technology innovations. With a series of achievements along
the road to unification in physics, we now end up with the two distinct entities, namely quantum
field theory and general relativity.

As we know, quantum field theory is a powerful framework for us to understand a huge range
of phenomena in Nature such as high energy physics and condensed matter physics. Although the
underlying philosophies are different, they share quantum field theory as their common language.
In high energy physics, the philosophy is reductionism, where the goal is to figure out the UV
physics for our effective low energy IR physics. The standard model for particle physics is believed
to be an effective low energy theory. To see what really happens at UV, we are required to go
beyond the standard model by reaching a higher energy scale. This is the reason why we built LHC
in Geneva. This is also the reason why we plan to go to the Great Collider from the Great Wall
in China. While in condensed matter physics, the philosophy is emergence. Actually we have a
theory of everything for condensed matter physics, namely QED, or the Schrodinger equation for
electrons with Coulomb interaction among them. What condensed matter physicists are concerned
with is how to engineer various low temperature IR fixed points, namely various phases from such a
known UV theory. Such a variety of phases gives rise to a man-made multiverse, which is actually
resonant to the landscape suggested by string theory.

On the other hand, general relativity tells us that gravity is geometry. Gravity is different, so
subtle is gravity. The very longstanding issue in fundamental physics is trying to reconcile general
relativity with quantum field theory. People like to give a name to it, called Quantum Gravity
although we have not fully succeeded along this lane. Here is a poor man’s perspective into the
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current status of quantum gravity, depending on the asymptotic geometry of spacetime1. The reason
is twofold. First, due to the existence of Planck scale lp = (Gh̄

c3 )
1

d−1 , spacetime is doomed such that
one can not define local field operators in a d + 1 dimensional gravitational theory. Instead, the
observables can live only on the boundary of spacetime. Second, it is the dependence on the
asymptopia that embodies the background independence of quantum gravity.

2.1 De Sitter space: Meta-observables

Figure 1: The Penrose diagram for the global de Sitter space, where the planar de Sitter space associated
with the observer located at the south pole is given by the shaded portion.

If the spacetime is asymptotically de Sitter as

ds2 =−dt2 + l2 cosh2 t
l
dΩ

2
d , (2.1)

when t→±∞, then by the coordinate transformation u = 2tan−1 e
t
l , the metric becomes

ds2 =
l2

sin2 u
(du2 +dχ

2 + sin2
χdΩ

2
d−1) (2.2)

with χ the polar angle for the d-sphere. We plot the Penrose diagram in Figure 1 for de Sitter space.
Whence both the past and future conformal infinity I ∓ are spacelike. As a result, any observer can
only detect and influence portion of the whole spacetime. Moreover, any point in I + is causally
connected by a null geodesic to its antipodal point in I − for de Sitter. In view of this, Witten has
proposed the meta-observables for quantum gravity in de Sitter space, namely

〈 f |i〉=
∫ g f

gi

DgeiS[g] (2.3)

with g f and gi a set of data specified on I ± respectively. Then one can construct the Hilbert space
Hi at I − for quantum gravity in de Sitter space with the inner product ( j, i) = 〈Θ j|i〉 by CPT

1This is a poor man’s perspective because we shall try our best not to touch upon string theory although it is evident
that this perspective is well shaped by string theory in a direct or indirect way throughout these lecture notes.
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transformation Θ. The Hilbert space H f at I + can be constructed in a similar fashion. At the per-
turbative level, the dimension of Hilbert space for quantum gravity in de Sitter is infinite, which is
evident from the past-future singularity of the meta-correlation functions at those points connected
by the aforementioned null geodesics. But it is suspected that the non-perturbative dimension of
Hilbert space is supposed to be finite. This is all one can say with such mata-observables[1].

However, there are also different but more optimistic perspectives. Among others, inspired by
AdS/CFT, Strominger has proposed DS/CFT correspondence. First, with I + identified as I − by
the above null geodesics, the dual CFT lives only on one sphere rather than two spheres. Second,
instead of working with the global de Sitter space, DS/CFT correspondence can be naturally for-
mulated in the causal past of any given observer, where the bulk spacetime is the planar de Sitter
and the dual CFT lives on I −. For details, the readers are referred to Strominger’s original paper
as well as his Les Houches lectures[2, 3].

2.2 Minkowski space: S-Matrix program

Figure 2: The Penrose diagram for Minkowski space, where massless particles will always emanate from
I − and end at I +.

The situation is much better if the spacetime is asymptotically flat. As the Penrose diagram
for Minkowski space shows in Figure 2, the conformal infinity is lightlike. In this case, the only
observable is scattering amplitude, abbreviated as S-Matrix, which connects the out states at I +

to the in states at I −2. One can claim to have a well defined quantum gravity in asymptotically
flat space once a sensible recipe is made for the computation of S-Matrix with gravitons. Actually,
inspired by BCFW recursion relation[4], there has been much progress achieved over the last few
years along this direction by the so called S-Matrix program, in which the scattering amplitude

2Here we are concerned with the scattering amplitude for massless particles, including gravitons, since they are
believed to be more fundamental than massive particles. But nevertheless by taking into account the data at i±, the
scattering amplitude with massive particles involved can still be constructed in principle as it should be the case.
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is constructed without the local Lagrangian, resonant to the non-locality of quantum gravity[5].
Traditionally, S-Matrix is computed by the Feynman diagram techniques, where the Feynman rules
come from the local Lagrangian. But the computation becomes more and more complicated when
the scattering process involves either more external legs or higher loops. While in the S-Matrix
program the recipe for the computation of scattering amplitude, made out of the universal properties
of S-Matrix, such as Poincare or BMS symmetry, unitarity and analyticity of S-Matrix, turns out to
be far more efficient. It is expected that such an ongoing S-Matrix program will lead us eventually
towards a well formulated quantum gravity in asymptotically flat space.

2.3 Anti-de Sitter space: AdS/CFT correspondence

Figure 3: The Penrose diagram for the global anti-de Sitter space, where the conformal infinity I itself can
be a spacetime on which the dynamics can live.

The best situation is for the spacetime which is asymptotically anti-de Sitter as

ds2 =
l2

cos2 χ
(−dt2 +dχ

2 + sin2
χdΩ

2
d−1) (2.4)

with χ ∈ [0, π

2 ). As seen from the Penrose diagram for anti-de Sitter space in Figure 3, the confor-
mal infinity I is timelike in this case, where we can have a well formulated quantum theory for
gravity by AdS/CFT correspondence[6, 7, 8]. Namely the quantum gravity in the bulk AdSd+1 can
be holographically formulated in terms of CFTd on the boundary without gravity and vice versa.
We shall elaborate on AdS/CFT in the subsequent section. Here we would like to mention one very
interesting feature about AdS/CFT, that is to say, generically we have no local Lagrangian for the
dual CFT, which echoes the aforementioned S-Matrix program somehow.

3. Applied AdS/CFT

3.1 What AdS/CFT is

To be a little bit more precise about what AdS/CFT is, let us first recall the very basic object
in quantum field theory, namely the generating function, which is defined as

Zd [J] = ln[
∫

DΨeiSd [Ψ]+
∫

ddxJO]. (3.1)
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Whence one can obtain the n-point correlation function for the operator O by taking the n-th func-
tional derivative of the generating function with respect to the source J. For example,

〈O(x)〉= δZd

δJ(x)
, (3.2)

〈O(x1)O(x2)〉=
δ 2Zd

δJ(x1)δJ(x2)
=

δO(x1)

δJ(x2)
. (3.3)

As we know, we can obtain such a generating function by perturbative expansion using the Feyn-
man diagram techniques for weakling coupled quantum field theory, but obviously such a pertur-
bation method breaks down when the involved quantum field theory is strongly coupled except one
can find its weak dual. AdS/CFT provides us with such a dual for strongly coupled quantum field
theory by a classical gravitational theory with one extra dimension. So now let us turn to general
relativity, where the basic object is the action given by

Sd+1 =
1

16πG

∫
dd+1x

√
−g(R+

d(d−1)
l2 +Lmatter) (3.4)

for AdS gravity. Here for the present illustration and later usage, we would like to choose the
Lagrangian for the matter fields as

Lmatter =
l2

Q2 (−
1
4

FabFab−|DΦ|2−m2|Φ|2) (3.5)

with F = dA, D = ∇− iA and Q the charge of complex scalar field. The variation of action gives
rise to the equations of motion as follows

Gab−
d(d−1)

2l2 gab =
l2

Q2 [FacFb
c +2DaΦDbΦ− (

1
4

FcdFcd + |DΦ|2 +m2|Φ|2)gab], (3.6)

∇aFab = i(ΦDb
Φ−ΦDbΦ), (3.7)

DaDa
Φ−m2

Φ = 0. (3.8)

Note that the equations of motion are generically second order PDEs. So to extrapolate the bulk
solution from the AdS boundary, one is required to specify a pair of boundary conditions for each
bulk field at the conformal boundary of AdS, which can be read off from the asymptotical behavior
for the bulk fields near the AdS boundary

ds2→ l2

z2 [dz2 +(γµν + tµνzd)dxµdxν ], (3.9)

Aµ → aµ +bµzd−2, (3.10)

Φ→ φ−z∆−+φ+z∆+ (3.11)

with ∆± = d
2 ±

√
d2

4 +m2l23. Namely (γµν , tµν) are the boundary data for the bulk metric field,
(aµ ,bµ) for the bulk gauge field, and (φ−,φ+) for the bulk scalar field. But such pairs usually
lead to singular solutions deep into the bulk. To avoid these singular solutions, one can instead

3Here we are working with the axial gauge for the bulk metric and gauge fields, which can always been achieved.
In addition, although the mass square is allowed to be negative in the AdS it can not be below the BF bound− d2

4l2 [9, 10].
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specify the only one boundary condition from each pair such as (γµν ,aµ ,φ−). We denote these
boundary data by J, whose justification will be obvious later on. At the same time we also require
the regularity of the desired solution in the bulk. In this sense, the regular solution is uniquely
determined by the boundary data J. Thus the on-shell action from the regular solution will be a
functional of J.

What AdS/CFT tells us is that this on-shell action in the bulk can be identified as the generating
function for strongly coupled quantum field theory living on the boundary, i.e.,

Zd [J] = Sd+1[J], (3.12)

where apparently J has a dual meaning, not only serving as the source for the boundary quantum
field theory but also being the boundary data for the bulk fields. In particular, γµν sources the
operator for the boundary energy momentum tensor whose expectation value is given by (3.3) as
tµν , aµ sources a global U(1) conserved current operator whose expectation value is given as bµ ,
and the expectation value for the operator dual to the source φ− is given as φ+ up to a possible
proportional coefficient. The conformal dimension for these dual operators can be read off from
(3.9) by making the scaling transformation (z,xµ)→ (αz,αxµ) as d, d−1, and ∆+ individually.

Here is a caveat on the validity of (3.12). Although such a boundary/bulk duality is believed
to hold in more general circumstances, (3.12) works for the large N strongly coupled quantum
field theory on the boundary where N and the coupling parameter of the dual quantum field theory
are generically proportional to some powers of l

l p and l
ls

, respectively. In order to capture the 1
N

correction to the dual quantum field theory by holography, one is required to calculate the one-loop
partition function on top of the classical background solution in the bulk. On the other hand, to see
the finite coupling effect in the dual quantum field theory by holography, one is required to work
with higher derivative gravity theory in the bulk. But in what follows, for simplicity we shall work
exclusively with (3.12) in its applicability regime.

Among others, we would like to conclude this subsection with the three important implications
of AdS/CFT. First, a finite temperature quantum field theory at finite chemical potential is dual to
a charged black hole in the bulk. Second, the entanglement entropy of the dual quantum field
theory can be calculated by holography as the the area of the bulk minimal surface anchored onto
the entangling surface[11, 12, 13]. Third, the extra bulk dimension represents the renormalization
group flow direction for the boundary quantum field theory with AdS boundary as UV, although
the renormalization scheme is supposed to be different from the conventional one employed in
quantum field theory.

3.2 Why AdS/CFT is reliable

But why AdS/CFT is reliable? In fact, besides its explicit implementations in string theory
such as the duality between Type IIB string theory in AdS5× S5 and N = 4 SYM theory on the
four dimensional boundary, where some results can be computed on both sides and turn out to
match each other, there exist many hints from the inside of general relativity indicating that gravity
is holographic. Here we simply list some of them as follows.

• Bekenstein-Hawking’s black hole entropy formula SBH = A
4ld−1

p
[14].
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• Brown-Henneaux’s asymptotic symmetry analysis for three dimensional gravity[15], where
the derived central charge 3l

2G successfully reproduces the black hole entropy by the Cardy
formula for conformal field theory[16].

• Brown-York’s surface tensor formulation of quasi local energy and conserved charges[17].
Once we are brave enough to declare that this surface tensor be not only for the purpose of
the bulk gravity but also for a certain system living on the boundary, we shall end up with the
long wave limit of AdS/CFT, namely the gravity/fluid correspondence, which has been well
tested[18].

On the other hand, we can also see how such an extra bulk dimension emerges from quan-
tum field theory perspective. In particular, inspired by Swingle’s seminal work on the connection
between the MERA tensor network state for quantum critical systems and AdS space[19], Qi has
recently proposed an exact holographic mapping to generate the bulk Hilbert space of the same
dimension from the boundary Hilbert space[20], which echoes the aforementioned renormalization
group flow implication of AdS/CFT.

Keeping all of these in mind, we shall take AdS/CFT as a first principle and explore its various
applications in what follows.

3.3 How useful AdS/CFT is

As alluded to above, AdS/CFT is naturally suited for us to address strongly coupled dynamics
and non-equilibrium processes by mapping the involved hard quantum many body problems to
classical few body problems. There are two approaches towards the construction of holographic
models. One is called the top-down approach, where the microscopic content of the dual boundary
theory is generically known because the construction originates in string theory. The other is called
the bottom-up approach, which can be regarded as kind of effective field theory with one extra
dimension for the dual boundary theory.

By either approach, we can apply AdS/CFT to QCD as well as the QCD underlying quark-
gluon plasma, ending up with AdS/QCD[21, 22]. We can also apply AdS/CFT to condensed matter
physics, ending up with AdS/CMT[23, 24, 25, 26, 27]. Note that the bulk dynamics boils even-
tually down to a set of differential equations, whose solutions are generically not amenable to an
analytic treatment. So one of the central tasks in applied AdS/CFT is to find the numerical solu-
tions to differential equations. In the next section, we shall provide a basic introduction to the main
numerical methods for solving differential equations in applied AdS/CFT.

4. Numerics for Solving Differential Equations

Roughly speaking, there are three numerical schemes to solve differential equations by trans-
forming them into algebraic equations, namely finite different method, finite element method, and
spectral method. According to our experience with the numerics in applied AdS/CFT, it is favor-
able to make a code from scratch for each problem you are faced up with. In particular, the variant
of spectral method, namely pseudo-spectral method turns out to be most efficient in solving differ-
ential equations along the space direction where Newton-Raphson iteration method is extensively
employed if the resultant algebraic equations are non-linear. On the other hand, finite difference
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method such as Runge-Kutta method is usually used to deal with the dynamical evolution along the
time direction. So now we like to elaborate a little bit on Newton-Raphson method, pseudo-spectral
method, as well as Runge-Kutta method one by one.

4.1 Newton-Raphson method

To find the desired root for a given a non-linear function f (x), we can start with a wisely
guessed initial point xk. Then as shown in Figure 4 by Newton-Raphson iteration map, we hit the
next point xk+1 as

xk+1 = xk− f ′(xk)
−1 f (xk), (4.1)

which is supposed to be closer to the desired root. By a finite number of iterations, we eventually
end up with a good approximation to the desired root. If we are required to find the root for a group
of non-linear functions F(X), then the iteration map is given by

Xk+1 = Xk− [(
∂F
∂X

)−1F ]|Xk , (4.2)

where the formidable Jacobian can be tamed by Taylor expansion trick since the expansion coef-
ficient of the linear term is simply the Jacobian in Taylor expansion F(X) = F(X0)+

∂F
∂X |X0(X −

X0)+ · · ·.

Figure 4: Newton-Raphson iteration map is used to find the rightmost root for a non-linear algebraic equa-
tion.

4.2 Pseudo-spectral method

As we know, we can expand an analytic function in terms of a set of appropriate spectral
functions as

f (x) =
N

∑
n=1

cnTn(x) (4.3)

9
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with N some truncation number, depending on the numerical accuracy you want to achieve. Then
the derivative of this function is given by

f ′(x) =
N

∑
n=1

cnT ′n(x). (4.4)

Whence the derivatives at the collocation points can be obtained from the values of this function at
these points by the following differential matrix as

f ′(xi) = ∑
j

Di j f (x j), (4.5)

where the matrix D = T ′T−1 with Tin = Tn(xi) and T ′in = T ′n(xi). With this differential matrix, the
differential equation in consideration can be massaged into a group of algebraic equations for us to
solve the unknown f (xi) by requiring that both the equation hold at the collocation points and the
prescribed boundary conditions be satisfied.

This is the underlying idea for pseudo-spectral method. Among others, we would like to
point out the two very advantages of pseudo-spectral method, compared to finite difference method
and finite element method. First, one can find the interpolating function for f (x) by the built-in
procedure as follows

f (x) = ∑
n,i

Tn(x)T−1
ni f (xi). (4.6)

Second, the numerical error decays exponentially with the truncation number N rather than the
power law decay followed by the other two methods.

4.3 Runge-Kutta method

As mentioned before, we should employ finite difference method to march along the time
direction. But before that, we are required to massage the involved differential equation into the
following ordinary differential equation

ẏ = f (y, t), (4.7)

which is actually the key step for one to investigate the temporal evolution in applied AdS/CFT.
Once this non-trivial step is achieved, then there are a bunch of finite difference schemes available
for one to move forward. Among others, here we simply present the classical fourth order Runge-
Kutta method as follows

k1 = f (yi, ti),

k2 = f (yi +
∆t
2

k1, ti +
∆t
2
),

k3 = f (yi +
∆t
2

k2, ti +
∆t
2
),

k4 = f (yi +∆tk3, ti +∆t),

ti+1 = ti +∆t,yi+1 = yi +
∆t
6
(k1 +2k2 +2k3 + k4), (4.8)

10
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because it is user friendly and applicable to all the temporal evolution problems we have been
considered so far[28, 29, 30, 31, 32, 33]4.

5. Holographic Superfluid at Zero Temperature

In this section, we would like to take the zero temperature holographic superfluid as an con-
crete example to demonstrate how to apply AdS/CFT with numerics. In due course, not only shall
we introduce some relevant concepts, but also present some new results[34].

The action for the simplest model of holographic superfluid is just given by (3.4). To make
our life easier, we shall work with the probe limit, namely the back reaction of matter fields onto
the metric is neglected, which can be achieved by taking the large Q limit. Thus we can put the
matter fields on top of the background which is the solution to the vacuum Einstein equation with
a negative cosmological constant Λ = −d(d−1)

2l2 . For simplicity, we shall focus only on the zero
temperature holographic superfluid, which can be implemented by choosing the AdS soliton as the
bulk geometry[35], i.e.,

ds2 =
l2

z2 [−dt2 +dx2 +
dz2

f (z)
+ f (z)dθ

2]. (5.1)

Here f (z) = 1− ( z
z0
)d with z = z0 the tip where our geometry caps off and z = 0 the AdS boundary.

To guarantee the smooth geometry at the tip, we are required to impose the periodicity 4πz0
3 onto

the θ coordinate. The inverse of this periodicity set by z0 is usually interpreted as the confining
scale for the dual boundary theory.

In what follows, we will take the units in which l = 1, 16πGQ2 = 1, and z0 = 1. In addition,
we shall focus exclusively on the action of matter fields because the leading Q0 contribution has
been frozen by the above fixed background geometry.

5.1 Variation of action, Boundary terms, and Choice of ensemble

The variational principle gives rise to the equations of motion if and only if the boundary terms
vanish in the variation of action. For our model, the variation of action is given by

δS =
∫

dd+1x
√
−g[∇aFab + i(ΦDbΦ−ΦDb

Φ)]δAb−
∫

ddx
√
−hnaFab

δAb +

[(
∫

dd+1x
√
−g(DaDa−m2)ΦδΦ−

∫
ddx
√
−hnaDaΦδΦ)+C.C.]. (5.2)

To make the boundary terms vanish, we can fix Ab and Φ on the boundary. Fixing Ab amounts to
saying that we are working with the grand canonical ensemble. In order to work with the canonical
ensemble where

√
−hnaFab is fixed instead, we are required to add the additional boundary term∫

d3x
√
−hnaFabAb to the action, which is essentially the Legendre transformation. On the other

hand, fixing φ− gives rise to the standard quantization. We can also have an alternative quantization
by fixing φ+ when −d2

4 < m2 < −d2

4 +1[37]. In what follows, we shall restrict our attention onto
the grand canonical ensemble and the standard quantization for the case of d = 3 and m2 = −2,
whereby ∆− = 1 and ∆+ = 2.

4It is worthwhile to keep in mind that the accumulated numerical error is of order O(∆t4) for this classical Runge-
Kutta method.
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5.2 Asymptotic expansion, Counter terms, and Holographic renormalization

What we care about is the on-shell action, which can be shown to have IR divergence gener-
ically in the bulk by the asymptotic expansion near the AdS boundary, corresponding to the UV
divergence for the dual boundary theory. The procedure to make the on-shell action finite by adding
some appropriate counter terms is called holographic renormalization[38]. For our case, the on-
shell action is given by

Son−shell =
1
2
[
∫

d4x
√
−g(∇aFab)Ab−

∫
d3x
√
−hnaFabAb]+

1
2
[(
∫

d4x
√
−gΦ(DaDa−m2)Φ−

∫
d3x
√
−hnaDaΦΦ)+C.C.]

=
1
2
[
∫

d4x
√
−gi(ΦDb

Φ−ΦDbΦ)Ab−
∫

d3x
√
−hnaFabAb]−

1
2
(
∫

d3x
√
−hnaDaΦΦ+C.C.). (5.3)

By the asymptotic expansion in (3.10) and (3.11), the divergence comes only from the last two
boundary terms and can be read off as |φ−|

2

z
5. So the holographic renormalization can be readily

achieved by adding the boundary term −
∫

dx
√
−h|Φ|2 to the original action. Whence we have

〈 jµ〉 = δSren

δaµ

= bµ ,

〈O〉 = δSren

δφ−
= φ+, (5.4)

where jµ corresponds to the conserved particle current and the expectation value for the scalar
operator O is interpreted as the condensate order parameter of superfluid. If this scalar operator
acquires a nonzero expectation value spontaneously in the situation where the source is turned off,
the boundary system is driven into a superfluid phase.

5.3 Background solution, Free energy, and Phase transition

With the assumption that the non-vanishing bulk matter fields (Φ = zφ ,At ,Ax) do not depend
on the coordinate θ , the equations of motion can be explicitly written as

0 = ∂
2
t φ +(z+A2

x−A2
t + i∂xAx− i∂tAt)φ +2iAx∂xφ −2iAt∂tφ −∂

2
x φ

+3z2
∂zφ +(z3−1)∂ 2

z φ , (5.5)

0 = ∂
2
t Ax−∂t∂xAt − i(φ∂xφ̄ − φ̄∂xφ)+2Axφφ̄ +3z2

∂zAx +(z3−1)∂ 2
z Ax, (5.6)

0 = (z3−1)∂ 2
z At +3z2

∂zAt −∂
2
x At +∂t∂xAx +2φ̄φAt + i(φ̄∂tφ −Ψ∂t φ̄), (5.7)

0 = ∂t∂zAt + i(φ∂zφ̄ − φ̄∂zφ)−∂z∂xAx, (5.8)

where the third one is the constraint equation and the last one reduces to the conserved equation
for the boundary current when evaluated at the AdS boundary, i.e.,

∂tρ =−∂x jx. (5.9)
5Note that the outward normal vector is given by na =−z( ∂

∂ z )
a.
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To specialize into the homogeneous phase diagram for our holographic model, we further make the
following ansatz for our non-vanishing bulk matter fields

φ = φ(z),At = At(z). (5.10)

Then the equations of motion for the static solution reduce to

0 = 3z2
∂zφ +(z3−1)∂ 2

z φ +(z−A2
t )φ , (5.11)

0 = 2Atφφ̄ +3z2
∂zAt +(z3−1)∂ 2

z At , (5.12)

0 = φ∂zφ̄ − φ̄∂zφ , (5.13)

where the last equation implies that we can always choose a gauge to make φ real. It is not hard to
see the above equations of motion have a trivial solution

φ = 0,At = µ, (5.14)

which corresponds to the vacuum phase with zero particle density. On the other hand, to obtain
the non-trivial solution dual to the superfluid phase, we are required to resort to pseudo-spectral
method. As a demonstration, we here plot the nontrivial profile for φ and At at µ = 2 in Figure 5.

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.1

0.2

0.3

0.4

0.5

z

Φ

0.0 0.2 0.4 0.6 0.8 1.0

1.7

1.8

1.9

2.0

z

At

Figure 5: The bulk profile for the scalar field and time component of gauge field at the chemical potential
µ = 2.

The variation of particle density and condensate with respect to the chemical potential is plotted
in Figure 6, which indicates that the phase transition from the vacuum to a superfluid occurs at
µc = 1.715. It is noteworthy that such a phenomenon is reminiscent of the recently observed
quantum critical behavior of ultra-cold cesium atoms in an optical lattice across the vacuum to
superfluid transition by tuning the chemical potential[36]. Moreover, the compactified dimension
in the AdS soliton background can be naturally identified as the reduced dimension in optical
lattices by the very steep harmonic potential as both mechanisms make the effective dimension of
the system in consideration reduced in the low energy regime. On the other hand, note that the
particle density shows up at the same time as our superfluid condensate, thus it is tempting to claim
that this particle density ρ is simply the superfluid density ρs. This claim is also consistent with
the fact that we are working with a zero temperature superfluid where the normal fluid component
should disappear. As we will show later on by the linear response theory, this is actually the case.
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Figure 6: The variation of particle density and condensate with respect to the chemical potential, where we
see the second order quantum phase transition take place at µc = 1.715.

But to make sure that Figure 6 represents the genuine phase diagram for our holographic
model, we are required to check whether the corresponding free energy density is the lowest in
the grand canonical ensemble. By holography, the free energy density can be obtained from the
renormalized on shell Lagrangian of matter fields as follows6

F = −1
2
[
∫

dz
√
−gi(ΦDb

Φ−ΦDbΦ)Ab−
√
−hnaAbFab|z=0]

= −1
2

µρ +
∫

dz(Atφ)
2, (5.15)

where we have made use of the source free boundary condition for the scalar field at the AdS
boundary. As shown in Figure 7, the superfluid phase is the thermodynamically favored one com-
pared to the vacuum phase when the chemical potential is greater than the critical value. So we are
done.

0 1 2 3 4

-4

-3

-2

-1

0

μ

ΔF

Figure 7: The difference of free energy density for the superfluid phase from that for the vacuum phase.

6Here we have used iSLorentzian = −SEuclidean and it = τ with τ the Euclidean time identified as the inverse of
temperature.
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5.4 Linear response theory, Optical conductivity, and Superfluid density

Now let us set up the linear response theory for the later calculation of the optical conductivity
of our holographic model. To achieve this, we first decompose the field φ into its real and imaginary
parts as

φ = φr + iφi, (5.16)

and assume that the perturbation bulk fields take the following form

δφr = δφr(z)e−iωt+iqx,δφi = δφi(z)e−iωt+iqx,δAt = δAt(z)e−iωt+iqx,δAx = δAx(z)e−iωt+iqx,

(5.17)
since the background solution is static and homogeneous. With this, the perturbation equations can
be simplified as

0 = −ω
2
δφr +(z−A2

t )δφr−2iωAtδφi +q2
δφr +3z2

∂zδφr +(z3−1)∂ 2
z δφr

−2AtφrδAt , (5.18)

0 = −ω
2
δφi +(z−A2

t )δφi +2iωAtδφr +q2
δφi +3z2

∂zδφi +(z3−1)∂ 2
z δφi

+iωφrδAt + iqφrδAx, (5.19)

0 = −ω
2
δAx−ωqδAt +3z2

∂zδAx +(z3−1)∂ 2
z δAx +2φ

2
r δAx−2iqφrδφi, (5.20)

0 = (z3−1)∂ 2
z δAt +3z2

∂zδAt +q2
δAt +ωqδAx +2φ

2
r δAt +4Atφrδφr

+2iωφrδφi, (5.21)

0 = −iω∂zδAt − iq∂zδAx−2(∂zφrδφi−φr∂zδφi), (5.22)

where we have used φi = 0 for the background solution.
Note that the gauge transformation

A→ A+∇θ ,φ → φeiθ (5.23)

with
θ =

1
i
λe−iωt+iqx (5.24)

induces a spurious solution to the above perturbation equations as

δAt =−λω,δAx = λq,δφ = λφ . (5.25)

We can remove such a redundancy by requiring δAt = 0 at the AdS boundary7. In addition, δφ

will also be set to zero at the AdS boundary later on. On the other hand, taking into account the
fact that the perturbation equation (5.22) will be automatically satisfied in the whole bulk once it is
fulfilled at any constant z surface, we choose this surface simply at the AdS boundary, which gives
rise to ∂zδAt |z=0 =− q

ω
∂zδAx|z=0

8. Then we can employ the pseudo-spectral method to obtain the
desired numerical solution by combining the rest perturbation equations with the aforementioned

7The only exception is the ω case, which can always be separately managed if necessary.
8This result comes from Bianchi identity 0 = ∇ava = 1√

−g ∂µ (
√
−gvµ ) for Maxwell equation, whereby the z com-

ponent of Maxwell equation satisfies ∂z(
vz

z4 ) = 0 if the other equations of motion hold.
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boundary conditions as well as the other boundary conditions at the AdS boundary, depending on
the specific problem we want to solve.

In particular, to calculate the optical conductivity for our holographic model, we can simply
focus on the q = 0 mode and further impose δAx = 1 at the AdS boundary. Then the optical
conductivity can be extracted by holography as

σ(ω) =
∂zδAx|z=0

iω
(5.26)

for any positive frequency ω9. According to the perturbation equations, the whole calculation is
much simplified because δAx decouples from the other perturbation bulk fields. We simply plot
the imaginary part of the optical conductivity in Figure 8 for both vacuum and superfluid phase,
because the real part vanishes due to the reality of the perturbation equation and boundary condition
for δAx. As it should be the case, the DC conductivity vanishes for the vacuum phase, but diverges
for the superfluid phase due to the 1

ω
behavior of the imaginary part of optical conductivity by the

Krames-Kronig relation

Im[σ(ω)] =
1
π

P
∫

∞

−∞

dω
′Re[σ(ω ′)]

ω−ω ′
. (5.27)

Furthermore, according to the hydrodynamical description of superfluid, the superfluid density ρs

can be obtained by fitting this zero pole as ρs
µω

[39, 40, 41]. As expected, our numerics shows that
the resultant superfluid density is exactly the same as the particle density within our numerical
accuracy. The other poles correspond to the gapped normal modes for δAx, which we are not
interested in since we are focusing on the low energy physics.

0 2 4 6 8
-20

-10

0
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20

ω

Im σ

0 2 4 6 8
-20

-10

0

10

20

ω

Im σ

Figure 8: The left panel is the imaginary part of optical conductivity for the vacuum phase, and the right
panel is for the superfluid phase at µ = 6.5.

Let us come back to the equality between the particle density and superfluid density. Although
this numerical result is 100 percent reasonable from the physical perspective, it is highly non-
trivial in the sense that the superfluid density comes from the linear response theory while the
particle density is a quantity associated with the equilibrium state. So it is better to have an analytic
understanding for this remarkable equality. Here we would like to develop an elegant proof for this

9Note that σ(−ω̄) = σ(ω), so we focus only on the positive frequency here.
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equality by a boost trick. To this end, we are first required to realize ρs =−µ∂zδAx|z=0 with ω = 0.
Such a ω = 0 perturbation can actually be implemented by a boost

t =
1√

1− v2
(t ′− vx′),x =

1√
1− v2

(x′− vt ′) (5.28)

acting on the superfluid phase. Note that the background metric is invariant under such a boost. As
a result, we end up with a new non-trivial solution as follows

φ
′ = φ ,A′t =

1√
1− v2

At ,A′x =−
v√

1− v2
At . (5.29)

We expand this solution up to the linear order in v as

φ
′ = φ ,A′t = At ,A′x = vAt , (5.30)

which means that the linear perturbation δAx is actually proportional to the background solution
At . So we have ρs = ρ immediately.

5.5 Time domain analysis, Normal modes, and Sound speed

In what follows we shall use linear response theory to calculate the speed of sound by fo-
cusing solely on the hydrodynamic spectrum of normal modes of the gapless Goldstone from the
spontaneous symmetry breaking, which is obviously absent from the vacuum phase. As such, the
perturbation fields are required to have Dirichlet boundary conditions at the AdS boundary. Then
we cast the linear perturbation equations and boundary conditions into the form L (ω)u = 0 with u
the perturbation fields evaluated at the grid points by pseudo-spectral method. The normal modes
are obtained by the condition det[L (ω)] = 0, which can be further identified by the density plot
|det[L (ω)]′

det[L (ω)] | with the prime the derivative with respect to ω . We demonstrate such a density plot
in Figure 9, where the hydrodynamic mode is simply the closest mode to the origin, marked in
red. Besides such a frequency domain analysis of spectrum of normal modes, there is an alter-
native called time domain analysis, which we would like to elaborate on below. We first cast the
equations of motion into the following Hamiltonian formalism

∂tφ = iAtφ +P, (5.31)

∂tP = iAtP− (z+A2
x + i∂xAx)φ −2iAx∂xφ +∂

2
x φ −3z2

∂zφ +(1− z3)∂ 2
z φ , (5.32)

∂tAx = Πx +∂xAt , (5.33)

∂tΠx = i(φ∂xφ̄ − φ̄∂xφ)−2Axφφ̄ −3z2
∂zAx +(1− z3)∂ 2

z Ax, (5.34)

0 = (z3−1)∂ 2
z At +3z2

∂zAt +∂xΠx− i(P̄φ −Pφ̄), (5.35)

∂t∂zAt = −i(φ∂zφ̄ − φ̄∂zφ)+∂z∂xAx. (5.36)

Then with the assumption that the perturbation bulk fields take the form as δ (t,z)eiqx, the perturba-

17



P
o
S
(
M
o
d
a
v
e
2
0
1
5
)
0
0
3

Applied AdS/CFT Hongbao Zhang

tion equations on top of the superfluid phase is given by

∂tδφr = −Atδφi +δPr, (5.37)

∂tδφi = φrδAt +Atδφr +δPi, (5.38)

∂tδPr = AtφrδAt −AtδPi− (z+q2)δφr−3z2
∂zδφr +(1− z3)∂ 2

z δφr, (5.39)

∂tδPi = −iqφrδAx +AtδPr− (z+q2)δφi−3z2
∂zδφi +(1− z3)∂ 2

z δφi, (5.40)

∂tδAx = δΠx + iqδAt , (5.41)

∂tδΠx = 2iqφrδφi−2φ
2
r δAx−3z2

∂zδAx +(1− z3)∂ 2
z δAx, (5.42)

0 = (z3−1)∂ 2
z δAt +3z2

∂zδAt + iqδΠx−2φrδPi +2Atφrδφr, (5.43)

∂t∂zδAt = 2∂zφrδφi−2φr∂zδφi + iq∂zδAx. (5.44)

As before, using the last equation at the AdS boundary as well as the source free boundary condi-
tions for all the perturbation fields, we can obtain the temporal evolution of the perturbation fields
for any given initial data by Runge-Kutta method, where δAt is solved by the constraint equation
(5.43). The normal modes can then be identified by the peaks in the Fourier transformation of the
evolving data. We demonstrate such a spectral plot in Figure 10. As expected, such a time domain
analysis gives rise to the same result for the locations of normal modes as that by the frequency
domain analysis.

0.0 0.5 1.0 1.5 2.0 2.5 3.0
0

200

400

600

800

1000

Ω

Figure 9: The density plot of | det[L (ω)]′

det[L (ω)] |with q= 0.3 for the superfluid phase at µ = 6.5. The normal modes
can be identified by the peaks, where the red one denotes the hydrodynamic normal mode ω0 = 0.209.

Then the dispersion relation for the gapless Goldstone can be obtained and plotted in Figure
11, whereby the sound speed vs can be obtained by the fitting formula ω0 = vsq. As shown in
Figure 12, the sound speed increases with the chemical potential and saturate to the predicted
value 1√

2
by conformal field theory when the chemical potential is much larger than the confining

scale[39, 40, 41], which is reasonable since it is believed that the conformality is restored in this
limit.

6. Concluding Remarks

Like any other unification in physics, AdS/CFT correspondence has proven to be a unique tool
for one to address various universal behaviors of near-equilibrium as well as far-from-equilibrium
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Figure 10: The spectral plot for ln |δ φ̂i(ω)]| with q = 0.3 for the superfluid phase at µ = 6.5, where the
initial data are chosen as δφi = z with all the other perturbations turned off. The normal modes can be
identified by the peaks, whose locations are the same as those by the frequency domain analysis within our
numerical accuracy.
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Figure 11: The dispersion relation for the gapless Goldstone mode in the superfluid phase at µ = 6.5, where
the sound speed vs = 0.606 is obtained by fitting the long wave modes with ω0 = vsq.
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Figure 12: The variation of sound speed with respect to the chemical potential for the superfluid phase.
When the chemical potential is much larger than the confining scale, the conformality is restored and the
sound speed approaches the predicted value 1√

2
by conformal field theory.
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dynamics for a variety of strongly coupled systems, which otherwise would be hard to attack.
During such an application, numerical computation has been playing a more and more important
role in the sense that not only can numerics leave us with some conjectures to develop an analytic
proof and some patterns to have an analytic understanding but also brings us to the regime where
the analytic treatment is not available at all.

In these lecture notes, we have touched only upon the very basics for the numerics in applied
AdS/CFT. In addition, we work only with the probe limit in the concrete example we make use
of to demonstrate how to apply AdS/CFT with numerics. The situation will become a little bit
involved when the back reaction is taken into account. Regarding this, the readers are suggested to
refer to [42] to see how to obtain the static inhomogeneous solutions to fully back reacted Einstein
equation by Einstein-DeTurck method. On the other hand, the readers are recommended to refer to
[43] to see how to evolve the fully back reacted dynamics, where with a black hole as the initial data
it turns out that the Eddington like coordinates are preferred to the Schwarzschild like coordinates.
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