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Beyond the isobar model:
Rescattering in the system of three particles.
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The isobar model is an essential part of partial wave analyses (PWA) of multi-body hadronic
final states. In the isobar model, all final states are described as sequential two-body decays
of intermediate resonances. It turned out to work surprisingly well in the past, despite the fact
that it neglects rescattering, i.e. interactions in the final state. With the advent of data samples
of extremely high statistical significance from ongoing experiments, effects due to final state
interactions may become important in order to understand the data. We discuss the example of
the recently observed a1(1420) in the 3π final state using PWA techniques. In our model, we
interpret the signal as a result of rescattering in the final state. In the presence of coupled πππ

/ KK̄π channels, final-state interaction causes a redistribution of events between the πππ and
KK̄π systems. We compare our interpretation to the genuine resonance hypothesis and discuss a
sophisticated approach to clarify the nature of the signal.
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1. Introduction

The goal of hadron spectroscopy is to identify resonances and to identify their nature, e.g.
ordinary bound states of quarks and antiquarks or exotic states with different degrees of freedom.
The states are accessible in a scattering experiment. An isolated narrow resonance appears in
the spectrum as a peak, the phase difference runs rapidly through 90◦, with a total phase motion of
180◦. But usually the experimentally measured spectrum is more complicated than a single isolated
resonance. The reasons and consequences are as follows:

• The first difficulty is due to wide and overlapping resonances. Generally, amplitudes for
different resonances interfere, changing the shape of the observed intensity and the corre-
sponding phase motion. A coherent sum of two resonance amplitudes (e.g. Breit-Wigner) is
not the correct answer for the amplitude in presence of two resonant poles.

• The two-body system is the simplest scattering system. The experimental and theoretical
understanding of low partial waves for the ππ and πK systems has advanced considerably
over the last 30 years. Unfortunately, we still do not know much about many other two-body
systems (πη , πη ′, πω , . . . ). The behavior of amplitudes in the high mass region > 1.5GeV
is not well known and parameterized.

• The system of three interacting particles is very rich because, on the one hand, resonances
appear in pair-interactions as well as in the full dynamics of the system. On the other hand,
however, scattering effects and inelastic channels may enhance observables in a similar way
as resonances [1, 2, 3, 4, 5].

In the first section of this paper we discuss the recent observation of a tiny but very interesting
enhancement in 3π final state, the a1(1420) [6]. We treat the observation as a rescattering effect
caused by a peculiar kinematics and the presence of the KKπ channel coupled to 3π . We calculate
the diagram for the first order rescattering and compare two different model fits to the COMPASS
data on the a1(1420): our rescattering model vs. the Breit-Wigner model presented in [6]. The
second section is dedicated to a systematic approach in the theory of rescattering. We demonstrate
the application of general scattering theory to the three-body final state. We set up the Khuri-
Treiman equations [7] for the scalar amplitude with two subchannels with attractive resonance
interactions and solve them numerically. Finally, we discuss their interpretation.

2. Resonance-like behaviour of non-resonant amplitude

The a1(1420) is a resonance-like signal observed by the COMPASS collaboration [6] and
confirmed by the VES collaboration [8]. A partial wave analysis in bins of the 3π-mass and the
reduced squared 4-momentum transfer t ′ has been employed by COMPASS to extract the intensity
and the relative phase motions for 88-waves. An unexpected resonance-like behavior has been
observed in the 1++ f0(980)π P-wave near 1.4GeV. A clear peak structure and a rapid phase motion
with respect to the 1++ ρπ S-wave suggest the presence of a new resonance in the JPC = 1++ sector
different to the well-known a1(1260). The signal was called a1(1420).

There are several issues which make the observation of this structure extremely interesting:
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• The a1(1420) can not be a radial excitation of the a1(1260) firstly because the peak is too
close to the ground state. Secondly, the width of the a1(1420) is much smaller than the width
of the a1(1260) which contradicts the expectation. Thirdly, the a1(1420) does not fit to the
radial excitation trajectory.

• The a1(1420) does not appear in lattice calculations [9].

• The a1(1260) is allowed to decay to the 1++ f0(980)π P-wave. Then the intensity of this
wave is expected to grow rapidly from the f0(980)π threshold on the tail of the wide a1(1260).
This feature is not observed.

• The position of the peak almost coincides with the threshold for the K?K̄ channel.

We suggest a dynamic explanation of the phenomenon which does not require a genuine reso-
nance [2]. A final state interaction is considered for the coupled-channels system 1++ f0(980)π P-
wave and 1++ K?K̄ S-wave. We find that cross-channel scattering K?K̄→ f0(980)π via K exchange
has a very peculiar resonance-like behavior exactly at the mass of the observed a1(1420) signal.

First we give a kinematical explanation of the phenomenon. We consider the decay of the
broad a1(1260) with invariant mass w to real K? and K̄ in the rest frame. They fly back to back
with the same momentum. When the K? subsequently decays to real Kπ , it may happen that the
K goes to the same direction as K̄ with a velocity higher than the K̄, and thus catching up with it.
The invariant mass of the KK̄ system is determined by w. The invariant mass of collinear KK̄ is
precisely the mass of f0(980) when w = 1.42GeV.

Mathematically the resonance-like behavior is caused by a logarithmic branch point on the
second Riemann sheet close to the physical region. Whatever the production mechanism of K?K̄
is, the amplitude for the f0π final state via rescattering is given by a loop integral. It might be
a triangle loop if the kaon system originates from a1(1260) non-resonant production. The loop
integral has a singularity for the peculiar kinematics discussed above. The effect is known as
triangle singularity because the branch point a1(1420) is made by the leading singularity of the
triangle diagram. Landau classified the singularities of loop integrals [10]. Coleman and Norton
[11] formulated the necessary conditions for singularities in loops. They found that singularities of
loop integrals correspond to classical scattering processes with all particles on mass shell.

The rescattering process being enhanced by the triangle singularity leads to a migration of
events from the KKπ final state to the 3π final state (a general discussion can be found in Ref. [12]).
To demonstrate this idea we show in Fig. 1 the kinematically allowed region of the Dalitz plot for
the π+π−π− system superimposed by the one for KK̄π . The invariant mass squared of the π+π−

or KK̄ subsystem is along the x axis, the one of the other π+π− or the Kπ subsystem is along
the y axis, for the 3π or KK̄π system, respectively. The horizontal dashed line indicates the K?

resonance, the vertical dashed line shows the position of the f0(980) resonance for both kaon
and pion subsystems. When we change the invariant mass of the full system w, the sizes of the
Dalitz plots change and consequently the positions of their borders with respect to the indicated
resonances. When w = 1.4GeV the intersection of the dashed lines coincides with the border of
the kaon Dalitz plot, i.e. the 3-momentum vectors of the decay products are aligned. In this case,
events are redistributed from the intersection point along the f0(980) vertical dashed line. Since f0
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Figure 1: Kinematically allowed regions of the Dalitz plots for (blue) the 3π and (orange) the KK̄π systems
at w = 1.4GeV. The position of the f0(980) resonance is shown by the vertical dashed line. The horizontal
dashed line indicates the K? resonance for the Kπ subsystem.

has both a ππ and a KK̄ decay channel, this results in a migration of events from the KK̄π Dalitz
plot to the 3π Dalitz plot [12].

To compare the hypothesis of a new resonance to our explanation we perform a fit of the
intensities of the 1++ ρ(770)π S-wave, the 1++ f0(980)π P-wave and their relative phase motion for
one t ′ bin. We use the resonance model of Ref. [6], where the amplitude for every wave is a sum of a
non-resonance background term (flexible curve) and a Breit-Wigner signal part. For our alternative
interpretation we use the rescattering amplitude as input for the signal in the 1++ f0(980)π P-wave.
As a result, the 1++ ρ(770)π S-wave is fitted similarly well in our model, the result being similar to
Fig. 3a of Ref. [6]. Here we show the fit results for the 1++ f0(980)π P-wave in the representation
of the Argand diagram.

The left side of Fig. 2 shows the fit with the rescattering amplitude for the signal, the right plot
is the fit with the resonance (Breit-Wigner) parameterization of the signal part of 1++ f0(980)π P-
wave. For both fits the signal component is shown as a blue line; it determines the main phase
motion. The non-resonant background has no phase motion but, coherently contributing to the
amplitude, it shifts every point of the blue curves. The red curves shows the full amplitude as a
result of the fit.

The rescattering amplitude (blue curve on the left plot of Fig. 2) develops a phase motion over
more than 180◦. A part of the phase motion is due to the wide a1(1260) resonance which decays
to K?K. The rapid phase motion in the interval of the fit is related to the triangle singularity. In
the Breit-Wigner hypothesis the signal curve (blue curve on the right side of Fig. 2) is a circle by
construction.

Note that the Breit-Wigner amplitude has two free parameters, the mass and the width. The
rescattering amplitude is completely fixed and has no free parameters. We conclude that the COM-
PASS data are equally well described by both models, with similar χ2.

Our model of the final state interaction is still very simplified. To make a solid statement about
the nature of a1(1420) a more sophisticated analysis of the rescattering processes has to be done.
The next section is dedicated to the current progress in this direction.
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Figure 2: Argand diagram for 1++ f0(980)π P. The phase is measured with respect to 1++ ρ(770)π S. Two
hypotheses are tested: the left plot is the result of the fit with the rescattering amplitude to describe the
signal, the right plot the result with the Breit-Wigner parameterization of the signal. The data points are the
result of the PWA in mass and t ′ bins preformed by COMPASS. The ones printed in black have been used for
both fits while the grey ones are further away from the signal region and have not been taken into account.
The full amplitude from the fit of the intensities of the 1++ f0(980)π P and 1++ ρ(770)π S waves and their
relative phase is shown as red curve. The signal contribution is shown in blue for both fits, the non-resonant
background by green arrows. It does not exhibit a phase motion but shifts the amplitude for both fits.

3. Systematic approach to rescattering

One may notice that the triangle diagram is only first term of the full rescattering series. This
brings up further questions:

• How close is the first term to the full process taking into account all possible rescatterings?

• Is there a method to sum up the full rescattering series?

• Does it converge?

The approach which we consider in the following has been suggested in Ref. [7] and is often called
Khuri-Treiman equations. It employs the principle of unitarity to answer the questions above.
To demonstrate the approach we consider a simple example, which is unphysical because of its
simplifications, but serves as an illustration of the method. Let A = A(s1,s2,s3) be the amplitude
for the π1π2π3 final state, where s1 = (p2 + p3)

2, s2 = (p3 + p1)
2, s3 = (p1 + p2)

2. We assume
that the πi, i = 1 . . .3 are distinguishable scalar particles with 4-momenta pi and known interaction
amplitudes at fixed w. The amplitude for π2π3 scattering is t(1)(s1) = 〈π2π3| T̂ |π2π3〉. Analogously,
the scattering amplitude for π1π2 is t(3). In this example, we use a parameterization of the (ππ)

S-wave fitted to Ref. [13] for t(1), and a ρ-like Breit-Wigner amplitude for t(3), for simplicity with
the two pions in an S-wave. We make a further simplification by setting interaction amplitude for
π1π3 scattering to zero.

We know that whatever the answer for the full amplitude A is, it must satisfy elastic unitarity:

∆siA = 2i
∫

Adρi t(i)∗, i = 1 . . .3. (3.1)
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where ∆siA is the discontinuity of the amplitude A across the unitarity cut in the two-body scattering
channel i (i.e. π2π3 for i = 1, etc.), ρi is a half of the phase-space of intermediate two-body states
for the corresponding channel.

A first guess at the expression for the full amplitude of this example may be

A(s1,s3) = c(1)t(1)(s1)+ c(3)t(3)(s3), (3.2)

where the c(i) are production constants which do not depend on si but on w2 only, representing the
dynamics of the full system (three-particle resonances). This representation is a standard ansatz for
the PWA used by many experimental groups. The approach is called the Isobar Model (IM).The
problem is this parameterization does not satisfy Eq. 3.1.

In the Khuri-Treiman approach, we construct the full amplitude for the problem in a similar
way as the sum of amplitudes for every subchannel:

A(s1,s3) = A(1)(s1,s3)+A(3)(s3,s1), with A(i) = ∑
l
(2l +1)a(i)l Pl(zi), (3.3)

where a(i)l denotes the two-body partial wave of angular momentum l (corrected for rescattering),
Pl(zi) the Legendre polynomials and zi = cosθi with θi the scattering angle in the subchannel i.
Keeping only terms with l = 0, the expression for a(1)0 satisfying elastic unitarity is [7]

a(1)0 (s1,s3) = t(1)0 (s1)

[
c(1)0 +

1
π

∫
ds′

ρ1(s′)b
(1)
0 (s′)

s′− s1

]
, (3.4)

with
b(1)0 (s1) =

∫ dz1

2
a(3)0 (s3(s1,z1),s1) (3.5)

being the projection to the subchannel amplitude from the crossed subchannels. The corresponding
amplitude a(3)0 is constructed analogously by the replacement 3↔ 1.

The result is a system of coupled integral equations, which can be solved numerically follow-
ing Ref. [14]. Since the equations depend linearly on the couplings c(i)0 , the solution can be cast in
the form

A =
(

α
(1)
direct +α

(3)
induced

)
c(1)0 +

(
α
(3)
direct +α

(1)
induced

)
c(3)0 , (3.6)

where α
(1)
direct ≡ a(1)0 , α

(3)
induced ≡ a(3)0 are solutions of the equations with c(1)0 = 1, c(3)0 = 0, and

α
(3)
direct ≡ a(3)0 , α

(1)
induced ≡ a(1)0 are solutions of the equations with c(1) = 0, c(3) = 1. A comparison

between the moduli of t(i)0 , α
(i)
direct, and α

(i)
induced are shown in Fig. 3 for both amplitudes i = 1,3, with

t(1)0 representing a (ππ) S-wave and t(3)0 a ρ-like signal, as mentioned above.
The meaning of Eq. 3.6 is as follows. Consider the part of the amplitude which corresponds

to the production of the interacting pair π2π3. Without rescattering this amplitude would be t(1)0 .
Rescattering with the bachelor pion π1 results in a projection of this amplitude onto the crossed
channel π1π2. A non-zero amplitude for the crossed-channel interaction in turn reflects back and
changes the shape of the initial amplitude. The resummation of all scattering processes where the
last scattering is the same as the first carries index αdirect while the reflection terms are denoted as
αinduced.
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Figure 3: Modification of the isobar shapes (here: moduli of amplitudes) due to rescattering. The gray
curves demonstrate the ansatz for the amplitudes t(i)0 in the Khuri-Treiman equations. The modified shapes
of these amplitudes in the direct channels are shown by black solid lines, the induced shapes are shown by
black dashed lines. See text for further details.

This approach has already been successfully applied to several reactions [15, 16, 17, 14]; the
complexity of the model is currently being increased continuously. The first two items summarize
the recent achievements, the further items represent our ideas to proceed:

1. The 3π final state from ω, φ decays has only one major subchannel amplitude (π+π−)P i.e.
the ρ(770).

2. The analysis of the K−π+π+ final state produced in D+ decays performed in Ref. [14] is
more complicated because it includes 8 scattering amplitudes.

3. The decay K → 3π was one of the original motivation for Khuri-Treiman equations. With
the recent precise data from NA48/2 experiment it becomes interesting again to apply the
formalism because of the prominent peak in the π0π0 spectrum [18]. It is the reaction where
the extension of the formalism to the coupled-channel case can be tested.

4. The πππ and πKK final states from τ decay have fixed quantum numbers JPC = 1++. The
biggest data set is collected by CLEO Collaboration [19]. The invariant mass of the system
w runs from threshold to 1.8GeV. To describe the reaction one indeed needs to have a model
for the dynamics of the full system, which is not part of the approach considered here. An
alternative way to proceed is a mass-independent analysis, widely used by the COMPASS
and VES experiments [20]. The idea here is to perform the Khuri-Treiman analysis indepen-
dently in bins of w without any assumptions on c(i)(w) (essentially constants at every bin).
The study of the dynamics in w is then considered as a second step of the analysis.

This approach could clarify the a1(1420) puzzle discussed above. The difficulties are the
following: many waves have to be considered, a coupled-channels formalism is required,
taking into account spin is essential because it results in several waves for a given spin for
ππ subsystem (e.g. ρπ S-wave and ρπ D-wave).

5. The diffractively produced 3π final state has the highest complexity among the available
data samples. In addition to the wide 3π spectrum, the quantum numbers JPC of the final

6
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system are not fixed. The main PWA model used by COMPASS consist of 88 waves, with
JPC sectors 0−+, 1++, 2++, 2−+, . . . . It describes the data very well while the interpretation
of the extracted w-dependence is model-dependent, e.g. by fixing the isobar shapes.

The method we intend to approach the complexity of the problem is to replace the classi-
cal partial waves by Khuri-Treiman partial waves, i.e. the expressions in the parentheses of
Eq. 3.6, in one specific sector, e.g. 0−+, while keeping the other sectors filled with standard
partial waves.

It is worth noticing that low two-body partial waves relevant for the problem are well constrained
[13, 21].

4. Summary and outlook

Understanding the interactions in a three-body system is a modern challenge in spectroscopy.
Many obstacles to this task in the past have been overcome: very precise data have been collected,
computational resources are highly developed. We are now fully equipped to tackle the problem of
the three-body system.

In this context, the a1(1420) is a unique object. It appears in the system of the three lightest
hadrons. As we discussed, it is likely related to the effect of three-body final state interaction which
makes a difference to two-body system. The inelastic channel with a rather narrow resonance and
the peculiar kinematics mimic a resonance behavior. We have a solid method to approach the
problem and we are on the way to solve it. Similar mechanisms might play a very important role
in the charmonium and bottomonium sector.
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