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The MeerKAT telescope will be one of the most sensitive radio arrays in the pre-SKA era. Here
we discuss a low-frequency SZ-selected cluster survey with MeerKAT, the Meerkat Exploration
of Relics, Giant Halos, and Extragalactic Radio Sources (MERGHERS) survey. The primary goal
of this survey is to detect faint signatures of diffuse cluster emission, specifically radio halos and
relics. SZ-selected cluster samples offer a homogeneous, mass-limited set of targets out to higher
redshift than X-ray samples. MeerKAT is sensitive enough to detect diffuse radio emission at the
faint levels expected in low-mass and high-redshift clusters, thereby enabling radio halo and relic
formation theories to be tested with a larger statistical sample over a significantly expanded phase
space. Complementary multiwavelength follow-up observations will provide a more complete
picture of any clusters found to host diffuse emission, thereby enhancing the scientific return of
the MERGHERS survey.
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1. Introduction

Galaxy clusters, being at the intersection of astrophysics and cosmology, are a rich class of
objects to study throughout the electromagnetic spectrum. They typically consist of ∼70-80% dark
matter, and 15-20% of a tenuous plasma called the intracluster medium (ICM), with the remainder
of the mass budget taken up by the baryonic matter of the member galaxies.

To date, there exist large samples of cluster detections through both X-ray and microwave
(through the Sunyaev-Zel’dovich (SZ) effect [41]) observations [15, 2, 28, 44, 31, 34]. Using
these large statistical samples, cosmological parameters such as σ8 and the matter density, Ωm,
can be constrained via cluster number counts and/or mass functions. However, since the cluster
mass is inferred from observed cluster properties such as X-ray luminosity or the SZ Compton-y
parameter, number counts and mass functions are sensitive to the chosen mass-observable scaling
relation. These scaling relations are influenced by the cluster physics and dynamical state, and
understanding the thermodynamic properties of the clusters in the sample can consequently reduce
the systematic uncertainties in the scaling relations and in the cosmological parameter constraints.
One method for determining a cluster’s dynamical properties is through the detection of diffuse
cluster-scale (∼Mpc) synchrotron emission in the form of radio halos and relics, the existence of
which have been linked to merger activity in the cluster.

Radio relics are polarized structures found on the cluster outskirts and are typically elongated
with the major axis perpendicular to the cluster radius. They have so far been found only in dis-
turbed systems and have a physical extent larger than expected based on the typical life-time of the
emitting particles. These properties indicate a merger connection, with the particles re-energised
through diffuse shock acceleration (DSA) caused by merger shocks. However, some radio relics
challenge our understanding of the physics involved: relics have been found with Mach numbers
which are incompatible with current reacceleration/DSA formation theories [29], some clusters
with strong X-ray shocks have no relic emission [37], and the alignment of magnetic fields within
some relics is still not well understood [45].

Radio halos are centrally located, ∼Mpc scale regions of diffuse synchrotron emission, with
typical flux densities of a few µJy/arcsec2, fainter than their relic counterparts. To date they have
been found in approximately 50 high mass (M500 > 4.7× 1014M�) clusters, most of which lie at
low to intermediate redshifts (z< 0.4), with only a handful detected above a redshift of 0.5 (see [49]
and references therein1). As in the case of radio relics, the observed size of radio halos establishes
the requirement for particle reacceleration. Two main theories have been studied: the hadronic or
secondary-electron model in which relativistic electrons are created from proton-proton collisions
within the ICM [13, 1], and the primary electron or turbulent reacceleration model which stipulates
that an existing population of cosmic ray electrons are reaccelerated via merger-driven turbulence
[17, 5]. Although a hybridization [7] of the two models has not been ruled out, the latter model is
the currently preferred theory due to its predictions of a bimodality in the radio-X-ray plane and
the existence of a population of ultra-steep spectrum sources (α ∼ 1.5−1.9), both of which have
been observed (see e.g. [6], [3]).

The aforementioned bimodality separates the radio-X-ray plane into radio halo-loud clusters
whose non-thermal and thermal properties are correlated, and a population of radio halo-quiet sys-

1Yuan et al. (2015) contains the most recent catalogue of radio halo, relic, and mini-halo observations.
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tems with upper limits approximately an order of magnitude below the correlation. The ultra-steep
spectrum sources mostly lie slightly below the scaling relation, potentially filling in the region be-
tween the correlation and the upper limits [9]. Initially discovered with X-ray clusters, the bimodal-
ity has also been found using a sample of SZ-selected clusters, although there is some evidence that
the bimodality isn’t as strong in this case [9, 39], with the radio halo dropout fraction being smaller
for the SZ versus X-ray selection [39].

In line with the primary electron model predictions, magnetohydrodynamical simulations by
Donnert et al. [14] showed radio halos to be transient phenomena, with the strength of the radio
emission dependent on the stage of the host cluster merger. Such simulations have been compared
to radio halo observations, along with multiwavelength data, to estimate where along the merger
track a radio halo is being observed [26]. This transitory characteristic may be a key underlying
factor in the uncertainties in global radio halo properties and the scatter within the various scaling
relations.

In addition to the impact of selection effects on the bimodality, there are still a number of open
questions related to radio halo physics and formation, chief among them being a full understanding
of the formation model and merger connection – radio halos have been found in low-luminosity
clusters [22], as well as in a cluster with an intact cool core [4]. The powerful radio halo (and relics)
found in the high redshift cluster “El Gordo” [27] also questions our understanding of the magnetic
fields driving the synchrotron emission: inverse Compton losses are expected to dominate at high
redshift, significantly reducing the observed radio power in these systems.

A third form of diffuse radio emission in clusters are radio mini-halos (see e.g. [48]). These
are associated with the brightest cluster galaxy (BCG) in cool-core systems and are not connected
with cluster merger activity. There are only 20 or so mini-halos found to date as it can be difficult
to disentangle their faint, diffuse emission from that of the BCG itself. Although the physics and
formation of mini-halos are not fully understood, it has been suggested that they form from gas
sloshing in the centre of the cluster and that there may be a formation link with their larger radio
halo counterparts. Furthermore, there is evidence for a spatial correspondence between mini-halo
emission and high pressure regions seen in high resolution SZ observations [19], linking them to
the non-thermal ICM.

For all cases of diffuse radio emission found in clusters, large statistical samples of the differ-
ent types of emission are necessary in order to answer the open questions relating to their global
properties, as well their connection to cluster dynamics. To this end, a large survey of a few hundred
clusters with a sensitive instrument such as MeerKAT would be highly beneficial to start addressing
some of these questions in the pre-SKA era.

In this proceeding we will discuss the possibility of such a study with the MeerKAT telescope,
the Meerkat Exploration of Relics, Giant Halos, and Extragalactic Radio Sources (MERGHERS)
survey, as a MeerKAT open time project. In Section 2 we discuss a potential cluster sample, and
highlight the strengths of MeerKAT for diffuse emission studies in Section 3, with some technical
issues addressed in Section 4. Sections 5.1 and 5.2 describe the types of radio-based science one can
achieve with a large statistical sample, and the multiwavelength follow-up is discussed in Section
6. We conclude and summarise the proceedings in Section 7.
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2. Cluster sample

Most of the radio halo, relic and mini-halo studies to date have been based on X-ray selected
cluster samples. With the success of various SZ telescopes such as the Atacama Cosmology Tele-
scope (ACT, [42]), the South Pole Telescope (SPT, [36]), and Planck [33], we now have access
to large SZ cluster samples which can be used for diffuse emission studies. SZ-selection has the
benefit of the flux limit translating directly into a mass limit, since the integrated pressure scales
with mass and is not diluted with redshift. There is also some indication that the SZ may select
more uniformly in merger timescale based on the fact that the signal boosting during a merger is
less severe for SZ than in X-rays [35].

To expand the discovery space of diffuse emission studies to low mass and high redshift, we
need a large, homogeneously selected cluster sample covering a wide range of mass and redshift.
This is ideally provided by ACT which is mass-limited, with better sensitivity and resolution than
the Planck satellite. Planck beam dilution is also severe at higher redshift, which compromises the
translation between flux-limited and mass-limited in this phase space.

ACT has been online since 2007, having completed three seasons with its polarization-capable
upgrade, ACTPol, in 2015. ACTPol is already producing ∼100 clusters in the first 680 deg2 (Hilton
et al., in prep.), thereby probing low-mass clusters over a much wider redshift range than Planck.
ACTPol covers 9 hours in Right Ascension broken into two strips: 23.5 - 2.5 hr at δ = -2.5, and 10
- 16 hr at δ = +7.5 and overlaps with the Northern Baryon Oscillation Spectroscopic Survey [38].
ACTPol has improved sensitivity to low-redshift systems compared to its predecessor survey, and
once the full 2700 deg2 of ACTPol coverage has been analysed, we expect to have a sample of a
few hundred clusters over a wide range of redshift up to z∼ 1. The successor to ACTPol, Advanced
ACT (AdvACT, [11, 24]), will survey a total of 20,000 deg2, which will significantly expand the
cluster sample.

The ACTPol sample, with a potential extension to AdvACT, will provide a large, homoge-
neously selected, statistical sample. The size of the sample allows for a split in redshift and/or mass
to study the evolution of cluster radio emission, and would be expected to discover new forms of
diffuse emission that don’t fit within the three groups mentioned above (radio halos, relics, and
mini-halos).

3. Observing clusters with MeerKAT

The key requirements for successful interferometric observations of faint, diffuse cluster radio
emission is flux sensitivity to extended structures and high enough resolution to disentangle point
source emission from any fainter extended structures. The former is provided by short baselines
and the latter by long baselines, both of which are simultaneously available with the full 64-dish
MeerKAT array, thus making it highly suitable for diffuse emission studies. The array configuration
and uv-coverage for a source close to zenith are shown in Figure 1. We use the UHF (580 - 1015
MHz) band for our calculations as, due to their steep spectral indices, radio halos and relics are
brighter at lower frequencies. This can be split into lower and upper sub-bands of approximately
200 MHz each, with central frequencies of 680 MHz and 890 MHz, respectively.

3
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Figure 1: Left: Layout for the full 64-dish MeerKAT array. Middle: Snapshot uv-coverage for a source
close to zenith. Right: uv-coverage from a 12 hour synthesis on the same source.

MeerKAT has a dense core made up of 70% of the dishes. The minimum baseline is 29
metres. At the lower part of the MeerKAT UHF band, this corresponds to a maximum scale of 52
arcminutes to which the array is sensitive. Since diffuse cluster emission is expected to have an
angular scale of 1 - 5 arcminutes, the dense core ensures that extended flux will not be resolved
out. The array configuration also has an outer component, the longest baseline of which is 8
km. At 680 MHz, this corresponds to a theoretical minimum resolution of 15 arcseconds, which is
small enough to distinguish between large scale emission and any compact point sources embedded
therein up to a redshift of z ≈ 0.7.

Furthermore, MeerKAT’s superior sensitivity, particularly in the short baselines, significantly
reduces the integration time required to reveal any diffuse emission. A large statistical cluster
sample can therefore be observed in a reasonable time of a few hundred hours, with approximately
1 - 2 hours on source per target. Simulations testing the sensitivity of MeerKAT to an extended,
faint source show that a typical radio halo in a low-mass, high-redshift (M500 = 4× 1014M�, z =
0.5) cluster can be detected with a signal-to-noise of 15 per UHF sub-band in one hour of target
observing, as seen in Figure 2. Since the entire UHF band will be used, the sub-bands can be used
for spectral index studies without the need for observing in an additional band.

4. Technical considerations

Although one of the strengths of MeerKAT is its excellent sensitivity, the small amount of
observing time required per target can lead to poor uv-coverage which hinders the reconstruction
of a good image. One of the ways to circumvent this issue is to split an observation into shorter
blocks spread over hour angle. Figure 3 shows the uv-coverage (top panels) and point spread
function (PSF, bottom panels), for two simulations each an hour long. Observation A (left panels)
is one continuous observation block, and observation B (right panels) has been broken up into
three blocks of twenty minutes, with a spacing of ∼2 hours between each block. Although both
uv-coverages are patchy, observation B has more uniform coverage than observation A, with the
result that its PSF has fewer sidelobes and the shape of the synthesised beam is more circular. This
solution to the problem of poor uv-coverage is also well-suited to including regular polarization
calibrator observations. In order to correctly calibrate the target polarization, good parallactic
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Figure 2: Recovered signal-to-noise of a simulated radio halo in test clusters with varying mass and redshift.
The simulation is for one hour of on-source observing per UHF sub-band. The central sub-band frequencies
are 680 MHz (solid) and 890 MHz (dashed).

angle coverage is required for the polarization calibrator, which means it is necessary to regularly
observe the relevant calibrator source throughout the target observation.

Another problem which has to be considered is that of classical confusion, which may become
a hindrance to achieving the theoretical noise limits based on the array properties. Classical confu-
sion occurs when faint sources smaller than the beam blend together, creating a natural noise limit
which cannot be improved upon by longer integration times. The number of source solid angles,
above a flux density S is given by

β =

[(∫
∞

S
n(x)dx

)
Ωs

]−1

(4.1)

where the integral defines the source count above a given flux density, and Ωs is the source solid
angle, which can be written in terms of the source size θs as Ωs = πθ 2

s [4ln2]−1 [10]. The flux
density below which one is affected by confusion noise is generally calculated when β = 25 for
power-law source counts. We estimate that the lower part of the UHF band is confusion limited
at ∼10 µJy. This noise limit can be achieved with approximately a 1 hour observation, indicating
that images may become confusion-limited quite quickly. We note, however, that Bayesian data
reduction techniques can take classical confusion noise into account, improving the accuracy of the
source detection results and mitigating the negative effects (e.g. [20]).

5. Prospective radio science

5.1 Diffuse cluster emission

A targeted survey of a few hundred homogeneously selected clusters will allow for a statistical
study of radio halos, relics, and radio mini-halos. In such a sample, based on existing statistics, one

5



P
o
S
(
M
e
e
r
K
A
T
2
0
1
6
)
0
3
0

An SZ-selected cluster survey with MeerKAT K. Knowles

Figure 3: Simulations of the uv-coverage (top) and PSF (bottom) for one hour of target observation. Left
panels: One continuous 1-hour observing block. Right panels: Three 20-minute observing blocks evenly
spaced over a 6 hour period.

may expect to find a few score mergers with radio halo and/or relic emission, and a mini-halo in a
few dozen of the relaxed clusters. As we move to the unexplored regions of the discovery space,
i.e. low masses and high redshifts, we expect to find several systems with diffuse emission which
cannot be classified by any of the existing categories. These systems will be extremely interesting
to study in terms of whether they represent a transitional state between one or more of the known
structures, adding to our understanding of how these structures form and evolve.

With a statistical sample of radio halo detections, a primary goal would be to test the turbulent
reacceleration model and to investigate the observed bimodality. Since current models and ob-
servations are restricted mainly to high-mass, low-redshift clusters, the expanded discovery space
enables a test of the existence of the bimodality over a wider range of mass and redshift, as well
as a study of the evolution of the scaling relations. Moreover, with a statistical sample, stacking of
marginal or non-detections becomes viable. Radio halos in SZ-selected ACT clusters have already
been detected [26, 27], with more detections expected in an ongoing campaign to follow-up ACT
clusters with the GMRT (Knowles et al. in prep).

Much of what is known about the physics of radio relic formation is based on in-depth studies
of a few spectacular examples [46, 47]. A large sample of quality relic detections possible with
MeerKAT, based on a homogeneously selected cluster sample, will enable a study of global relic
properties for the first time, as well as whether previously well-studied relics are representative of
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the general population. With observations probing lower mass systems where shock energies are
expected to be lower, as well as higher redshift systems, a greater understanding of the physics
and circumstances required to generate relic emission can be achieved. Moreover, the sensitivity
and large field of view of MeerKAT may reveal the presence of relic emission not coincident with
target clusters, which can be used to identify new clusters (e.g. [30]).

Since the existing group of clusters studied in terms of diffuse emission is fairly inhomoge-
neous, a proper study of the drop-out fractions and non-detections for both halos and relics has not
be possible due to varying selection effects throughout the population. With a large homogeneously
selected sample, the non-detections can be statistically studied to constrain the life-cycle of these
transient phenomena. In particular, with a large homogeneous sample including both relaxed and
disturbed clusters, the evolutionary relationship between radio halos and mini-halos, if any, can be
investigated.

Extending the phase space of studied clusters will allow us to investigate whether magnetic
fields scale in a self-similar way as one moves to lower mass and/or higher redshift systems. The
evolution and scaling of magnetic fields with cluster properties would impact our understanding
of both radio relic and radio halo formation. The wider research space will also allow for an
investigation into the impact of merger properties on the formation of large-scale diffuse emission.

5.2 Other radio science

Although the primary science goal of the cluster observations is the detection and study of
diffuse cluster emission, MeerKAT will provide useful, sensitive data for several other science
objectives.

With the full polarization capabilities and excellent sensitivity of MeerKAT, the magnetic field
in the clusters can be studied through Faraday rotation of background sources (e.g. [43]) or by
polarized bent tailed radio sources within the cluster itself (e.g. [16]). Radio galaxies in many
clusters show the presence of tailed emission. These objects are called narrow-angle or wide-
angle tailed galaxies (NATs and WATs). The physics of the bent jets are still widely studied,
with their morphologies thought to be influenced by environmental effects within the ICM, such
as ram pressure or buoyancy forces [8]. With the large dataset provided by a few hundred cluster
observations, many NATs and WATs are expected to be found. In the higher redshift systems where
better resolution is required to investigate the jets, these observations can serve as a basis for higher
resolution radio follow-up. For those systems hosting bent tailed sources, they can be used to
confirm the cluster dynamical state [32], assist in modelling merger dynamics [12], and measuring
density and velocity flows within the ICM [21].

With a significant sample of relaxed cluster observations over a wide range of redshift and
mass, the radio data will provide an excellent dataset for use in BCG studies, AGN feedback,
and other compact radio source research: recent studies have shown that a large fraction of BCGs
in relaxed, cool-core clusters are radio-loud AGN with non-thermal synchrotron jets and lobes.
These sources create cavities in the thermal ICM (see e.g. [23]), and the study of the interaction
between AGN lobes and the X-ray-emitting plasma is crucial to gaining a full understanding of
BCG properties and the physics in the central region of galaxy clusters.

Finally, due to the large MeerKAT field of view in the UHF band (> 1.5 deg2), superb sensi-
tivity, and targeting a new sample of clusters, many previously undiscovered sources will be found
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in the full field of view, such as diffuse emission from nearby galaxies, or extended radio emission
from known sources, which have been too faint to observe with other telescopes.

6. Multiwavelength programme

MeerKAT observations of a large statistical sample of galaxy clusters will provide a wealth of
radio information for both diffuse emission science as well as many other cluster and galaxy related
studies. The results of the radio observations can serve as a basis for multiwavelength follow-up
on a variety of instruments and wavebands.

Optical spectroscopy from a telescope such as SALT would provide spectroscopic redshifts
for cluster member galaxies which are crucial for radio halo merger and timescale analyses (e.g.
[26]), as well as providing an independent determination of the cluster dynamical state. For studies
of NATs and WATs, optical spectroscopy would provide accurate galaxy redshifts to be used in
modelling the merger activity in the cluster. With optical spectra, one can also study star formation
of cluster members as a function of redshift and cluster dynamical state (see e.g. [18] and references
therein).

High-resolution SZ (MUSTANG-2) and X-ray (Chandra/XMM) imaging of the clusters host-
ing diffuse emission would probe both the non-thermal and thermal regions of the ICM, and give
independent results on the cluster dynamical state. The results of the multiwavelength imaging are
useful for modelling the merger and for timescale analyses of radio halos, and for determination
of merger shock properties necessary for radio relic studies. For those clusters hosting mini-halos,
high-resolution SZ imaging would provide more information on the global properties of mini-halos
and their link to non-thermal pressure regions [19]. In terms of AGN studies, high-resolution SZ
observations can be used to image radio plasma bubbles and related features linked with AGN
feedback, while X-ray imaging is necessary to probe the link between AGN feedback and X-ray
cavities.

Finally, higher resolution radio observations with the JVLA or VLBI would be crucial for a
full investigation into any observed AGN jets or bent tailed sources, as the low frequency MeerKAT
beam cannot resolve the small-scale features necessary to fully analyse the jet morphologies. In
addition, wide-field VLBI observations of a subsample of the clusters allows for a discrimination
between the star forming (SF) and AGN nature of a cluster member’s radio emission [25], and
therefore an investigation of the AGN/SF properties as a function of cluster radius. Given the
power of the SZ selection, such observations would enable a systematic comparison of the AGN/SF
properties as a function of cluster mass, redshift, and merger state.

7. Summary and conclusion

Galaxy clusters host a range of interesting astrophysical processes and their non-thermal prop-
erties can be studied through the presence of diffuse radio emission in the form of radio halos,
relics, and mini-halos. High-quality observations of these large-scale radio signatures inform our
understanding of plasma physics in terms of shocks and turbulence in the ICM, and act as proxies
to study the properties of galaxy clusters and their dynamics. Under the assumption of a strong
merger connection, observing diffuse radio emission in a cosmological cluster sample can assist in
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understanding the dynamical state of the cluster and its impact on cosmological constraints derived
from the cluster mass function.

In order to significantly advance the study of these sources, a large, homogeneously selected,
statistical sample needs to be observed. The SZ-selected ACTPol sample provides a few hundred
clusters over a wide range of both mass and redshift.

In order to achieve high-quality detections, a very sensitive instrument is required. MeerKAT
is well-suited to this task due to its array configuration and superb flux sensitivity, which allows
for the observation of a few hundred clusters within a reasonable time frame. With MeerKAT
providing a sensitive radio dataset for the cluster sample, a multiwavelength follow-up of a subset
of the sample that hosts diffuse emission will enhance the study of diffuse radio emission and other
radio sources.
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