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The calculation of ε ′ within the Standard Model has been a critical goal of particle physics since

its definitive measurement sixteen years ago. The small size of this quantity makes it extremely

sensitive to new Beyond the Standard Model sources of CP violation that may help to explain

the origin of the matter/antimatter asymmetry in the Universe. Given the highly non-perturbative

character of this quantity, lattice QCD is the favored approach. After more than six years of devel-

opment, a successful lattice approach has emerged based on the Lellouch-Lüscher finite volume

relation and G-parity boundary conditions. We discuss our first complete, realistic calculation of

ε ′, published in PRL one year ago [1].

Flavor Physics and CP Violation,

6-9 June 2016

Caltech, Pasadena CA, USA

∗Speaker.

c© Copyright owned by the author(s) under the terms of the Creative Commons

Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0). http://pos.sissa.it/



P
o
S
(
F
P
C
P
2
0
1
6
)
0
1
7

Calculation of ε ′/ε on the lattice Christopher Kelly

One of the foremost goals of modern particle physics is understanding the origin of the matter-

antimatter asymmetry in the Universe. A necessary ingredient [2] is CP-violation: the breaking of

the combined fundamental charge conjugation and parity symmetries. In practice, the amount of

CP-violation in the Standard Model is insufficient (by several orders of magnitude) to account

for the observed asymmetry, hence there is a strong motivation to search for physics beyond the

Standard Model (BSM) by studying CP-violating processes. In particular, the direct violation of

CP in particle decays gains additional contributions in most BSM theories and offers a particularly

attractive avenue for the search for new physics.

Historically, direct CP-violation was first observed in decays of a CP-odd kaon to the CP-even

ππ state, where it is parametrized by the quantity ε ′. From experiment, one measures

Re(ε ′/ε)≈ 1

3
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(1)

where

ηq1q2
=

A(K0
L → πq1πq2)

A(K0
S → πq1πq2)

. (2)

Note ε = (2η+−+η00)/3 ≈ 2.23×10−3 is a measure of indirect CP-violation, and its magnitude

is known experimentally to 0.5% precision. Indirect CP-violation in K → ππ decays was first

measured [3] at BNL in 1964, a result for which Cronin and Fitch were awarded the Nobel Prize

in 1980. More recently (∼ 2002), combined results from FNAL and CERN give [4]

Re(ε ′/ε)≈ 1.66(23)×10−3 . (3)

In the underlying process, a neutral kaon can decay into either an isospin I = 0 (∆I = 1/2)

ππ state or an I = 2 (∆I = 3/2) ππ state, for which the corresponding amplitudes are A0 and A2,

respectively. Direct CP-violation manifests as a difference between the complex phases of these

amplitudes:

ε ′ =
iωei(δ2−δ0)

√
2

(

ImA2

ReA2

− ImA0

ReA0

)

, (4)

where δI are the s-wave ππ-scattering phase shifts and ω = ReA2/ReA0.

Although the underlying weak interactions involved in these decays occur at very short dis-

tances, the hadronic interaction observed in experiments receives substantial corrections from non-

perturbative QCD effects. For example, these contributions (as we discuss further below) are

mainly responsible for the so-called ∆I = 1/2 rule: an O(20×) enhancement of A0 over A2. As

the QCD coupling is large in this regime, the usual perturbative techniques for studying weakly

coupled theories cannot be used. Lattice QCD offers the only known, systematically improvable

technique - one for which all of the errors are controllable and can be improved with sufficient

computational investment - for studying QCD in this regime.

It is only in recent years that theoretical and computational advances have opened the door to

measuring K → ππ decays directly on the lattice. Our collaboration has now calculated both the A2

and A0 amplitudes, and therefore ε ′/ε . In this document we briefly summarize the salient details

of these calculations, discuss our results and provide and the outlook for future work.
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1. General strategy

1.1 Lattice simulations

Euclidean Green’s functions of an operator O can computed using Feynman’s path integral on

a discretized space-time as

〈O〉=
∫

DU O(U)exp(−S[U ])
∫

DU exp(−S[U ])
(1.1)

where DU is the Haar measure for the QCD gauge fields, which on a discretized space-time are

represented as SU(3) matrices residing between lattice sites (gauge links). Here S is the effective

action obtained by integrating out the fermionic degrees of freedom from the path integral; this

is done to avoid using anticommuting Grassman variables on a computer. Using Monte Carlo

techniques, one can importance sample the probability distribution

P(U) =
exp(−S[U ])

∫

DU exp(−S[U ])
, (1.2)

resulting in an ensemble of samples Ui of the gauge fields from which 〈O〉 can be approximated as

〈O〉 ≈ 1

N

N

∑
i=1

O(Ui) . (1.3)

In this setup, the operator O(U) comprises quark propagators computed as the inverse of

the fermionic Dirac matrix between the relevant sites. Given an operator comprising quark field

operators and gauge links, the appropriate form can be obtained simply by Wick contracting the

fermion fields.

In order to calculate a process involving particular particles, one must formulate operators

that transform appropriately under the various lattice symmetries. For example, pion states can be

created using pseudoscalar bilinear operators of the form q̄γ5q with appropriate quark fields. Such

operators in fact generate all states with the corresponding quantum numbers, and the particles of

interest can only be extracted by considering the Euclidean time dependence: The contribution to

the Green’s function of any eigenstate of the Hamiltonian decays exponentially in the energy of that

state, and therefore interactions involving states close in energy to the ground state can be extracted

by performing multi-exponential fits to the large time dependence. In practice the contributions of

states with energy larger than the ground state are typically very noisy and therefore it is highly

beneficial to work only with ground-state particles wherever possible.

Lattice calculations are necessarily performed in a finite box with some choice of boundary

conditions on the fermion and gauge fields. This has the immediate effect of discretizing the al-

lowed momenta of lattice states. For periodic boundary conditions, ψ(x+L) = ψ(x) where L is

the lattice spatial size, only momenta that are integer multiples of 2π/L are allowed. Similarly,

with antiperiodic boundary conditions, ψ(x+L) = −ψ(x), only odd-integer multiples of π/L are

allowed. There are also secondary finite volume effects that occur because the pion cloud surround-

ing every particle is distorted by the finite volume (and its hypercubic geometry); these effects are

exponentially suppressed in the lattice volume for the majority of cases, and can be ignored. For
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interacting multi-particle states there are important finite-volume effects beyond naïve momentum

quantization which require special treatment (cf. below).

1.2 K → ππ on the lattice

Given the large difference in energy between the weak scale (O(80) GeV) and the hadronic

scale (a few hundred MeV), the underlying weak process responsible for the decay can be very

precisely described by the ∆S = 1 weak effective Hamiltonian,

Heff
W =

GF√
2

V ∗
usVud

10

∑
i=1

[zi(µ)+ τyi(µ)]Qi(µ) , (1.4)

where z and y are c-number Wilson coefficients, τ = −V ∗
tsVtd/VudV ∗

us, Vi j are CKM matrix ele-

ments, and Qi are a set of 10 dimension-six four-quark operators. Both the Wilson coefficients and

the operators are renormalization scheme dependent, as indicated by their dependence upon the

renormalization scale µ , but their product is not. One important aspect of the lattice calculation

is renormalizing the bare lattice operators into the same scheme as the perturbatively computed

Wilson coefficients, typically the MS scheme. We accomplish this without resorting to the use of

perturbative QCD at the hadronic scale by using an intermediate ‘regularization-invariant MOM

scheme’ (RI-MOM) [5, 6] with which we can non-perturbatively run to a high energy scale where

we can legitimately match to MS using continuum perturbation theory.

Note that the determination of the Wilson coefficients of this effective Hamiltonian utilizes

perturbation theory to integrate out the contributions of the charm quark. While we believe the

errors this introduces to be small, future calculations would benefit from the inclusion of a fully-

dynamical charm quark. Note also that our calculations are performed with exact isospin and

without electromagnetism; the effects of these phenomena are expected to enter at the percent level

and are therefore significantly smaller than our present total errors. In future work we intend to

investigate these contributions.

The kaon and ππ states are generated by the appropriate combinations of quark field operators

as discussed above. For the ππ state we must take care to use operators that reside in the appropriate

representation of SU(2) isospin and that project only onto the s-wave angular momentum state.

Ultimately then, we seek to compute matrix elements of the form:

MFV(µ) =
GF√

2
V ∗

usVud [zi(µ)+ τyi(µ)]Zi j(µ)〈ππ|Q j(µ)|K〉 , (1.5)

where Zi j is the renormalization matrix relating the bare lattice operators to MS, and the the sub-

script FV indicates that these are finite volume matrix elements. In practice these differ significantly

from the infinite-volume decay amplitudes due to power-law finite-volume effects arising from the

continuous interactions of the final state pions due to their close confinement by the typically small

(in terms of the pion Compton wavelength) box. The appropriate correction is the Lellouch-Lüscher

factor [7].

A key challenge to these calculations is ensuring physical kinematics: The ground-state of

the ππ system comprises stationary pions (or the vacuum in the I = 0 case) and therefore has an

energy substantially lower than the ∼500 MeV kaon mass. A correlation function describing a kaon

3



P
o
S
(
F
P
C
P
2
0
1
6
)
0
1
7

Calculation of ε ′/ε on the lattice Christopher Kelly

decaying to two stationary pions or the vacuum does not describe the physical, energy-conserving

decay of interest. While the vacuum-state contribution can be isolated and explicitly subtracted,

the state with two pions at rest cannot and will dominate the signal. As described above, one

could attempt a multi-exponential fit to obtain the physical decay amplitude, which is an excited

state contribution to the correlation function (for an appropriate L); such fits however typically

suffer from large statistical noise, making a precise calculation difficult. This is particularly so

for the I = 0 amplitude where additional noise arises from so-called ‘disconnected’ contributions

(see below). We employ an alternative procedure, whereby we take advantage of the freedom to

manipulate the quark boundary conditions and choose those that make the pions antiperiodic in

space, such that their minimum momentum rises from zero to π/L where L can be tuned to match

the kaon and ππ energies.

2. Calculation of A2

The ∆I = 3/2 amplitude A2 can be computed directly via the following expression:

(2.1)〈(π+π0)I=2|HW |K+〉 =
√

2A2eiδ2

where δ2 is the I = 2 ππ-scattering phase shift that we can compute directly on the lattice using the

I = 2 ππ energy via Lüscher’s formula [8]. With modern lattice techniques the computation of A2

can be performed with percent-level statistical precision.

The imposition of physical kinematics is performed by applying antiperiodic spatial boundary

conditions (APBC) to the down quarks in one or more directions. As a result, the charged pion

states become antiperiodic also:

(2.2)π+(x + L) = [ūd](x + L) = −[ūd](x) = −π+(x)

π−(x + L) = [d̄u](x + L) = −[d̄u](x) = −π−(x) .

This approach has two drawbacks: for the neutral pions, which enter the matrix element of inter-

est, the down-quark momenta cancel and the ground-state remains stationary; and the formulation

explicitly breaks the isospin symmetry by applying different boundary conditions to the two light

quark flavors. Both of these issues can be circumvented by applying the Wigner-Eckart theorem to

relate the above matrix element to an unphysical one,

(2.3)〈(π+π0)I=2|Q∆Iz=
1
2 |K+〉 =

√
3

2
〈(π+π+)I=2|Q∆Iz=

3
2 |K+〉 ,

which contains only charged pions in a charge-2 final state which cannot mix with other represen-

tations by virtue of being the only charge-2 state in the system.

As the I = 2 final state cannot mix with the vacuum, it can be shown [9] that one can apply

these APBC only in the valence sector (i.e during measurements and not when generating the

ensemble of gauge fields) and incur only errors exponentially suppressed in the lattice volume.

This significantly reduces the cost of employing this technique.

Our most recent calculation [10] was performed on two lattices with large physical volumes

O((5 fm)3), physical pion masses, and two different lattice spacings. This enables us to take
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Figure 1: An example of a disconnected (type 4) diagram in the K → (ππ)I=0 decay. The four-quark

operator is in the center, and the self-contracted ππ “bubble” is on the right.

the continuum limit, improving on our earlier calculation [11]. Specifically we used the RBC &

UKQCD 483 × 96 (48I) and 643 × 128 (64I) Möbius domain wall fermion ensembles with the

Iwasaki gauge action at β = 2.13 and 2.25 respectively, corresponding to inverse lattice spacings

of a−1 = 1.730(4) GeV and a−1 = 2.359(7) GeV. The full properties of these ensembles can be

found in Ref. [12].

The simulated pion masses are 139.1(2) MeV and 139.2(3) MeV for the 48I and 64I respec-

tively. We applied APBC to the down quark in all three spatial directions, resulting in ππ energies

of EI=2
ππ = 496.5(1.6) MeV and 507.0(1.6) MeV; comparing to the kaon masses of mK = 498.82(26)

MeV and 507.4(4) MeV we observe excellent agreement indicating the decays are energy conserv-

ing. The slight mismatch between the the simulated pion and kaon masses and their physical values

is included as a 4.5% systematic error on Re(A2) and 1.1% on Im(A2).

For the amplitude we obtained

Re(A2) = 1.50(4)(14)×10−8 GeV

Im(A2) =−6.99(20)(84)×10−13 GeV ,
(2.4)

where the errors are statistical and systematic respectively. The real part of this amplitude agrees

well with the experimental value of 1.479(3)× 10−8 GeV, whereas the imaginary part represents

an entirely new Standard Model prediction.

For the I = 2 ππ scattering phase shift we obtain δ2 =−11.6(2.5)(1.2)◦ (a corrected version

of our continuum result [10]).

The systematic error in this calculation is dominated by the truncation at NLO of the pertur-

bative matching between the intermediate RI-MOM schemes and MS, and also the truncation error

on the perturbative Wilson coefficients. We intend to reduce these errors in the future through the

use of the step-scaling procedure to raise the renormalization scale in order to reduce the size of

the missing NNLO and higher corrections.

3. Calculation of A0

The I = 0 amplitude is determined by measuring the neutral kaon decays K0 → π+π− and

K0 → π0π0. Due to the vacuum quantum numbers of the final state, this calculation perforce

involves the calculation of so-called “disconnected diagrams” where the ππ state annihilates into

gluons and is recreated at a later time; an example of such a “type 4” diagram in this calculation is

shown in Fig. 1. Such diagrams are typically very noisy as the fluctuations are independent of the

separation of the disconnected parts.

A significant amount of the ππ vacuum coupling can be eliminated by separating the pion

sources in Euclidean time, a refinement first introduced in Ref. [13]. Further suppression can be
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achieved by combining the quark and anti-quark fields into “meson wavefunctions” constructed

in our case from hydrogen atom wavefunctions. The remaining statistical error can be reduced by

averaging over all spatial locations of the two-pion wavefunctions. These two steps are made possi-

ble by employing the all-to-all propagator technique of Ref. [14] whereby an approximation to the

propagator from any site to any other is obtained by first computing a subset of exact eigenmodes

of the Dirac matrix (900 in our case) using, for example, the Lanczos algorithm, and ‘patching up’

the remaining, typically less important, high-mode contributions using a stochastic technique. In

this approach one can optionally ‘dilute’ the stochastic sources in the spin, color, and in our case

flavor indices, in order to reduce the reliance on stochastic cancellation to correctly describe the

index structure of the propagator on a given site, at the cost of increasing the number of inversions

and the memory footprint. In practice we dilute in all three of these indices, and additionally dilute

in the source time coordinate to improve the temporal resolution.

Unfortunately the strategy of using antiperiodic boundary conditions on the down-quark prop-

agator in order to induce momentum in the ground-state pion and therefore assure an energy-

conserving decay cannot be employed for the ∆I = 1/2 calculation for two reasons: first, there is

no Wigner-Eckart relation that can be used to remove the neutral pions in the second of the two

decay channels; and second the breaking of the isospin symmetry cannot be avoided, making it

difficult to extract the ∆I = 1/2 contribution. As a result we chose to employ G-parity spatial

boundary conditions [15, 16, 17] (GPBC) for this calculation.

G-parity is a symmetry of the QCD Lagrangian comprised of a charge conjugation followed

by an isospin rotation of π radians about the y-axis. The charged and neutral pions are G-parity

odd eigenstates hence the application of this operation at the lattice boundary is equivalent to im-

posing APBC on the pion states, giving them a ground-state momentum of π/L. At the quark

level, G-parity transforms an up quark to an anti-down quark and the down quark to an anti-up

quark. This flavor mixing at the boundary introduces a number of difficulties [18, 19], the most

significant of which is the need to generate new ensembles in order to ensure that the sea pions that

enter as intermediate states in the disconnected diagrams have the same behavior as their valence

counterparts. An additional difficulty is a naïve factor of two in the computational cost of applying

the Dirac operator, which translates to a large increase in the time to generate configurations and

perform measurements.

We have recently published the first complete Standard Model calculation [1] of A0. We used

a 323 × 64 Möbius domain wall ensemble with the Iwasaki+DSDR gauge action at β = 1.75,

corresponding to a somewhat coarse lattice spacing of a−1 = 1.378(7) GeV but a large (4.6 fm)3

spatial volume. This compromise resulted in reduced finite-volume errors at the cost of a larger

discretization systematic. We employed G-parity boundary conditions in all three spatial directions,

resulting in an I = 0 ππ energy of EI=0
ππ = 498(11) MeV that closely matches the kaon mass mK =

490.6(2.4) MeV. The pion mass can be obtained by applying the continuum dispersion relation to

the ground-state (moving) pion energy, giving mπ = 143.1(2) MeV. We show the effective energies

of the kaon and ππ state in Fig. 2.

The results presented in this section were obtained using 216 independent measurements, the

generation of which required 200M Blue Gene/Q core hours.
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Figure 2: Effective energies of the kaon (squares) and two-pion (circles) states deduced from the correspond-

ing two-point functions by equating the results from two time separations to the function AcoshEeff(T/2− t)
where T = 64 is the temporal lattice size, plotted as a function of the smallest of those two separations. (We

replace T by T −8 for the ππ case.) These are overlaid by the errorbands corresponding to the fitted values

of Eππ (light blue) and mK (pink).

We obtained the following results for the real and imaginary parts of A0:

Re(A0) = 4.66(1.00)(1.21)×10−7 GeV

Im(A0) =−1.90(1.23)(1.04)×10−11 GeV ,
(3.1)

where the errors are again statistical and systematic, respectively. The real part of this amplitude

agrees with the experimental value of 3.3201(18)×10−7 GeV, serving as a test of the method. The

imaginary part once again represents an entirely new Standard Model prediction.

The 85% relative total error on our value for Im(A0) is significantly larger than that of the real

part due to a 50%-level numerical cancellation between the dominant operator contributions:

∆ [Im(A0), Q4] = 1.82(0.62)(0.32)×10−11 GeV

∆ [Im(A0), Q6] =−3.57(0.91)(0.24)×10−11 GeV .
(3.2)

As part of this calculation we apply the Lüscher method [8] to obtain the I = 0 ππ scattering

phase shift, for which we obtain

δ0 = 23.8(4.9)(1.2)◦ . (3.3)

This value is ∼2.7σ lower than the value obtained from phenomenology via the Roy equations

coupled with ChPT and/or experimental data [20, 21]. The origin of this discrepancy is presently

not known; one possibility is that the rapidly degenerating signal-to-noise ratio of our ππ correla-

tion function (Fig. 2) is masking excited state contamination. Another possibility is that the errors

associated with the Roy equation procedure or of the high-energy ππ-scattering data that enters the

calculation are underestimated. Future higher-precision lattice measurements should shed light on

this issue and also help us reduce the estimated 11% systematic error on the energy-dependence of

this quantity which enters into the determination of the Lellouch-Lüscher factor.

Our result for A0 is statistical error dominated; it is therefore of the highest priority to in-
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i j

j

i

π

πKi i

j

j

π

πK

Figure 3: Dominant contractions contributing to Re(A2) - C1 (left) and C2 (right). Here i and j are color

indices and the associated four-quark operator is the current-current operator transforming as (27,1) under

SU(3)L×SU(3)R.

crease the number of measurements, for which we aim to achieve a factor of 4 increase within the

timescale of a year. As part of this effort we intend to replace the existing data, which are affected

by a recently discovered error [22] in the generation of the ensembles whereby duplicate random

number generator (RNG) seeds were used for the two light quark flavors separated by 12 sites in

the y-direction, resulting in a persistent, unphysical correlation between gauge links separated by

this distance. Through consideration of a number of observables we have concluded that the effects

of this error are too small to affect our calculation; nevertheless the error damages our ability to

claim an ab initio calculation, justifying our intention to replace the data.

Among the dominant systematic errors on this calculation are once again those associated

with the truncation of the perturbative series in the computation of the Wilson coefficients and the

MS matching in the renormalization factors, which are estimated to be 12% and 15% respectively.

These errors are exacerbated here by the low, 1.53 GeV scale at which the underlying perturbative

calculations are performed. We expect significant improvements through the use of step-scaling to

a higher scale of µ = 2.3 GeV, a calculation which is also currently underway.

We estimate the discretization error arising due to our use of a single lattice spacing to be 12%.

Unfortunately the computational cost of generating an additional lattice spacing will likely require

the next generation of supercomputers.

4. Result for ε ′/ε

Combining our lattice determinations of Im(A2), Im(A0) and the ππ phase shifts with the

precise experimental values for Re(A2), Re(A0) and ω we obtain

Re

(

ε ′

ε

)

= Re

{

iωei(δ2−δ0)

√
2ε

[

ImA2

ReA2

− ImA0

ReA0

]

}

(4.1)

= 1.38(5.15)(4.59)×10−4, (4.2)

This is 2.1σ below the experimental value 16.6(2.3)× 10−4. While statistically insignificant, the

difference between the lattice and experimental values offers a tantalizing hint of a tension that

certainly justifies further study.

5. ∆I = 1/2 rule

Another interesting result that can be obtained from these calculations is a non-perturbative

8
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Figure 4: Cancellation of dominant contributions to Re(A2) on the 483 ensembles with a K - ππ separation

of 27 and the 643 ensembles with separation 36.

QCD determination of the ∆I = 1/2 rule. The experimental value for the ratio of the real parts of

A0 and A2 is
Re(A0)

Re(A2)
≃ 22.5 . (5.1)

The origin of the large difference between the two amplitudes has been a long-standing mys-

tery. The perturbative Wilson coefficients by themselves suggest a factor two enhancement of

Re(A0) [23, 24], but it was not known whether the remaining factor of ∼10 arises due to non-

perturbative QCD or from new physics. In our earlier calculations, and also in our most recent

work, we observed a strong, 70% cancellation between the two main contractions (Fig. 3) of the

dominant (27,1) operator contribution to Re(A2), giving rise to a strong suppression of this quan-

tity relative to Re(A0). This cancellation is demonstrated graphically in Fig. 4 (reproduced from

Ref. [10]). However, until a complete Standard Model determination of Re(A0) was performed, we

were unable to demonstrate that this cancellation explains the ∆I = 1/2 rule.

With our recent calculation of Re(A0) we can now compute the ∆I = 1/2 rule directly from

the lattice, for which we obtain
Re(A0)

Re(A2)
≃ 31.1(11.2) . (5.2)

While the errors are still presently quite large, this result strongly suggests that the ∆I = 1/2 rule

can be explained by low-energy QCD.

For recent discussions of earlier lattice and phenomenological estimates concerning the ∆I =

1/2 rule see Refs. [25, 26, 27].

6. Conclusions

We have detailed the first lattice determination of the direct CP violation parameter ε ′, com-

puted via the K → ππ amplitudes with I = 2 (A2) and I = 0 (A0) final states.

The calculation of A2 has been performed with high statistical precision on two lattice spac-

ings. The O(10%) total error is dominated by the truncation of the perturbative series used to

convert our lattice non-perturbative renormalization scheme to MS and also to compute the MS
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Wilson coefficients. These errors can be decreased in the future through the application of the

step-scaling procedure to go to higher renormalization scales and to cross the charm threshold.

We have also performed the much more difficult calculation of A0, albeit on a single, somewhat

coarse lattice. The errors are presently dominated by statistics due to a combination of the presence

of noisy disconnected diagrams and also, for the crucial Im(A0), a 50% cancellation between the

dominant Q4 and Q6 contributions. Our main focus in the near term is to improve the statistical

error, and we hope to achieve a factor of 4 increase in the number of measurements within a year. In

addition to the systematic discretization error resulting from the coarse lattice spacing, we estimate

that a comparable systematic error arises from the truncations of the perturbative series used for

the renormalization and Wilson coefficients, here exacerbated by the low, 1.53 GeV scale at which

we perform the RI → MS matching. We are already in the late stages of computing the non-

perturbative step-scaling factors that will raise this scale to 2.3 GeV. Going to finer lattice spacings

to reduce the discretization error remains a long-term goal.

Combining these results we obtain a value for Re(ε ′/ε) that is broadly in agreement (2.1σ )

with the experimental number but may, with continued effort, reveal a discrepancy indicating new

physics. We have also computed Re(A0)/Re(A2), which is experimentally determined to be sig-

nificantly larger than one (the ∆I = 1/2 rule) due to a formerly unknown mechanism. We obtain

a value consistent with the experimental number, from which we conclude that the ∆I = 1/2 rule

arises due to an observed strong cancellation between the dominant contributions to Re(A2) and

not due to new physics.
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