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The successive stages of a high-energy collision are conjectured to end up with chemical and

thermal freezeout of the produced particles. We utilize generic (non)extensive statistics which

is believed to determine the degree of (non)extensivity through two critical exponents due to

possible phase-space modifications. This statistical approach likely manifests various types of

correlations and fluctuations and also possible interactions among the final-state produced parti-

cles. We study the baryon-to-pion ratios at top RHIC and LHC energies including the so-called

proton anomaly.
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1. Introduction

In statistical-thermal models, in which anad hoc extensivity is assumed, i.e. Boltzman-Gibbs
(BG), statistical fits have been successfully utilized in order to describe the final-state produced
particles such as multiplicity, rapidity and transverse momentum distributions and yields and ratios
of specific particle species observed at a wide range of collision energies [1]. A clear picture about
the nuclear phase-diagram can be drawn from the variation ofthe chemical freezeout temperature
with the baryon chemical potential or the collision energies. It was surprisingly observed that at
top RHIC and LHC energies, the measured proton-to-pion ratios [2] seem not agreeing with the
extensive statistical-thermal models [3]. A possible explanation suggests that the freezeouts occur
in chemical and thermal out-of-equilibrium [4], which could be taken into consideration through
ingredients such as excluded volume corrections and nonequilibrium occupation factors, etc. added
to the extensive statistics.

Here, we assume that both equilibrium and nonequilibrium inthe particle production are best
simulated by generic (non)extensive statistical approach. Tsallis statistics [5] is a well-known ex-
ample on nonextinsivity. It enters an additional parameter, q, and leads to very low freezeout
temperatures relative to the ones deduced from the BG fits of the particle ratios and yields and
the transverse momentum distributions [6]. The generic (non)extensivite statistical approach de-
termines the degree of (non)extensivity through an equivalence class(c,d), to which a scaling
function is assigned. This is characterized by the exponentc or d for first or second property,
respectively. The well-know BG extensivity and Tsallis nonextensivity are retrieved at(1,1) and
(q,0), respectively. Avoiding thead hoc implementation of either BG or Tsallis to the particle pro-
duction, as they are just very special cases in the(c,d)-space, is a great advantage of the proposed
genetic (non)extensivity, especially that no theory is available so far describing the process of the
particle production. Secondly, the proposed approach assumes that the possible modifications in
the phase space likely autonomously determine whether the system of interest is to be characterized
by extensive or nonextensive statistics.

2. Generic (non)extensive statistics

Generalized entropy is well classified according to their asymptotic properties, which are cat-
egorized into an equivalent class(c,d) [7, 8, 6]

Sc,d [p] =
N

∑
i=1

A Γ(d +1,1− c log pi)−B pi, (2.1)

whereN is the number of micro-states or processes taking place in a complex system andΓ(a,b) =
∫ ∞

b dt ta−1exp(−t) is incomplete gamma-function.A andB are arbitrary parameters. The scaling
exponents(c,d) not only characterize both extensive and nonextensive entropies, but also specifies
the correspondent generalized exponential and logarithmic functions, respectively [7],

εc,d,r(x) = exp

{ −d
1− c

[

Wk

(

B(1− x/r)1/d
)

−Wk(B)
]

}

, (2.2)

Λc,d,r(x) = r

{

1− xc−1
[

1− 1− r(1− c)
dr

log(x)

]d
}

, (2.3)
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whereWk is thek-th Lambert-W function andB≡ (1−c)r[1−(1−c)r] exp{(1− c)r/[1− (1− c)r]},
with r = (1− c+ cd)−1. The scaling exponents can be parametrized as [7]

(1− c)−1 = lim
N→∞

N
d

dN
logW (N), d = lim

N→∞
logW (N)

[

c−1+

(

N
d

dN
logW (N)

)−1
]

,(2.4)

whereW (N) gives the number of states in a system composed ofN micro-states [7, 8]

W (N) =
1

εc,d(−ϕ cN)
exp

{

d
1− c

Wk

[

(1− c)e
1−c
cd

cd

(

ϕ cN
r

)1/d
]}

, (2.5)

andϕ is determined from the generalized entropyϕ = dSg/dN.
In classical hadron gas composed ofN resonances and from Eq. (2.2), the partition function

at finite temperature (T ) and chemical potential (µ) is given as

ln Zcl(T,µ) = V
N

∑
i

gi

∫ ∞

0

d3p
(2π)3 εc,d,r(xi), (2.6)

wherexi = [µi − (p2 +m2
i )

1/2]/T , gi being i-the resonance’s dispersion relation and degeneracy
factor andV is the fireball volume. For Fermi-Dirac and Bose-Einstein quantum statistics,

ln ZM|B(T,µ) = ±V
N

∑
i

gi

∫ ∞

0

d3p
(2π)3 Λc,d,r (1± εc,d,r(xi)) , (2.7)

where± stands fermions and bosons, respectively. All thermodynamic quantities can be derived,

p(T,µ) =
∂

∂V
ln Z(T,µ), n(T,µ) =

∂
∂ µ

p(T,µ). (2.8)

At the stage of chemical freezeout, the number of produced particles is conjectured to be fixed
and the produced resonances are assumed to complete their decays either to stable particles or to
other resonances. Accordingly, the contributions ofi-th stable particle or resonance to the number
density, Eq. (2.8), for instance, have to take into account both possibilities [9]

〈nfinali (T,µ)〉 = 〈ndirecti (T,µ)〉+∑
j 6=i

b j→in j(T,µ), (2.9)

whereb j→i is the branching ratio ofj-th resonance decaying intoi-th stable particle or resonance.
Great details about the hadron resonance gas (HRG) model canbe taken from the recent review
article [1], in which extensive statistics was assumed, exclusively. Also, more details about the
proposed generic (non)extensive approach can be found in Ref. [6].

3. Results and conclusions

The baryon-to-pion ratios, p̄/π−, p/π+, Λ/π−, Ξ/π−, Ξ̄/π+, Ω/π−, andΩ̄/π+ measured in
most central Au+Au collisions at

√
sNN = 200 GeV (open symbols with errors) are fitted by HRG

with generic nonextensive statistics (solid lines). Theseare compared with extensive HRG (dashed
lines) [1]. Both results are depicted in the left-hand panelof Fig. 1. The thermal fits of the same
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Fig. 1: Comparison of the results from our nonextensive HRG model for various baryon-to-pion ratios (lines) with
experimental measurements (open symbols with errors) at RHIC (left-hand panel) and LHC (right-hand panel).

√
sNN GeV T MeV µ MeV c d χ2/dof

Extensive 200 160.65 24.95 - - 1.51
2760 153.09 2.52 - - 3.16

Nonextensive 200 156.24 22.30 0.972 0.95 1.35
2760 161.71 2.52 1.011 1.0323 3.18

Tab. 1: Nonextensive and extensive fit parameters.

set of particle ratios measured in most central Pb+Pb collisions at
√

sNN = 2760 GeV to extensive
and generic-nonextensive HRG calculations are presented in the right-hand panel. The resulting
nonextensive and extensive fit parameters at both collisionenergies are listed in Tab. 1.

We observe that the various baryon-to-pion ratios are well reproduced by the HRG model with
generic nonextensive statistics. Furthermore, we notice that the resulting freezeout parameters are
very compatible with each others. This means that the (non)extensivity is not necessarily related
to radical changes in thermodynamic quantities, such as temperature, but rather to the equivalent
class(c,d). Last but not least, the resultingc andd mean that the nonextensivity in the particle
production is neither BG nor Tsallis. Ifc > 1 andd > 1, the generalized entropySg[p] = ∑N

i=1g(pi)

is no longer maximal for an equi-distributionpi = 1/N. If c < 1 andd < 1, Sg[p] is given by
Lambert-Wg exponentials.
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