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The successive stages of a high-energy collision are comgztto end up with chemical and

thermal freezeout of the produced particles. We utilizeegien(non)extensive statistics which

is believed to determine the degree of (non)extensivitpugh two critical exponents due to

possible phase-space modifications. This statisticalcampr likely manifests various types of

correlations and fluctuations and also possible interastiamong the final-state produced parti-
cles. We study the baryon-to-pion ratios at top RHIC and LH€rgies including the so-called

proton anomaly.
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1. Introduction

In statistical-thermal models, in which ad hoc extensivity is assumed, i.e. Boltzman-Gibbs
(BG), statistical fits have been successfully utilized idesrto describe the final-state produced
particles such as multiplicity, rapidity and transversemaatum distributions and yields and ratios
of specific particle species observed at a wide range ofsamllienergies [1]. A clear picture about
the nuclear phase-diagram can be drawn from the variatidhheothemical freezeout temperature
with the baryon chemical potential or the collision enesgié was surprisingly observed that at
top RHIC and LHC energies, the measured proton-to-piologdf2] seem not agreeing with the
extensive statistical-thermal models [3]. A possible explanatioggests that the freezeouts occur
in chemical and thermal out-of-equilibrium [4], which cdube taken into consideration through
ingredients such as excluded volume corrections and ndigum occupation factors, etc. added
to the extensive statistics.

Here, we assume that both equilibrium and nonequilibriurtinéparticle production are best
simulated by generic (non)extensive statistical approdaiallis statistics [5] is a well-known ex-
ample on nonextinsivity. It enters an additional paramejerand leads to very low freezeout
temperatures relative to the ones deduced from the BG fiteeoparticle ratios and yields and
the transverse momentum distributions [6]. The generio)gxiensivite statistical approach de-
termines the degree of (non)extensivity through an eqgemnad clasgc,d), to which a scaling
function is assigned. This is characterized by the exponenmtd for first or second property,
respectively. The well-know BG extensivity and Tsallis ertensivity are retrieved &t,1) and
(g,0), respectively. Avoiding thed hoc implementation of either BG or Tsallis to the particle pro-
duction, as they are just very special cases inthed)-space, is a great advantage of the proposed
genetic (non)extensivity, especially that no theory idlalsée so far describing the process of the
particle production. Secondly, the proposed approachmassihat the possible modifications in
the phase space likely autonomously determine whethey#tiers of interest is to be characterized
by extensive or nonextensive statistics.

2. Generic (non)extensive statistics

Generalized entropy is well classified according to thejngstotic properties, which are cat-
egorized into an equivalent clagsd) [7, 8, 6]

N
Salp] = _Ziﬂr(dJrl,l—clog pi) — % pi, (2.1)

whereN is the number of micro-states or processes taking placedmglex system anl(a,b) =

Jy dttatexp(—t) is incomplete gamma-functions and% are arbitrary parameters. The scaling
exponentgc, d) not only characterize both extensive and nonextensivegies, but also specifies
the correspondent generalized exponential and logautifumictions, respectively [7],

Ecar(X) = exp{l%o'C e (B—x/m)™?) —(B)] } (2.2)

d
Nedr(X) = r{l—xCl [1—#Iog(xﬂ }, (2.3)
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whereWwy is thek-th Lambertw function andB= (1—c)r[1— (1—c)r] exp{(1—c)r/[1— (1 —c)r]},
with r = (1—c+cd)~1. The scaling exponents can be parametrized as [7]

(1—c) ' = lim NS logW(N), d= lim logW(N)
N—00 N—co

dN dN

d ~1
c—1+ (N — IogW(N)) ] ,(2.4)

whereW(N) gives the number of states in a system composéd micro-states [7, 8]

B 1 d (1-c)ew [¢pcN\Y
W(N)_scﬁd(—qch)eXp{l—cwk[ cd < r > ]}’ (2:5)

and¢ is determined from the generalized entrapy= dS;/dN.
In classical hadron gas composed\bfesonances and from Eq. (2.2), the partition function
at finite temperaturel() and chemical potential() is given as

N 0 A3
NZa(T.p) =V 3 6 [ (5o fear() (2.6)

wherex; = [ — (p? + m¢)Y/2]/T, g beingi-the resonance’s dispersion relation and degeneracy
factor andV is the fireball volume. For Fermi-Dirac and Bose-Einsteiamum statistics,

“00 3

N
N Zue(T, 1) = 2V Y 6 | b Aciar (1 Eoar (X)), (2.7)

where+ stands fermions and bosons, respectively. All thermodynaomantities can be derived,

17} 17}
T,u)=—=—InZ(T T,u)=—=—p(T,u). 2.8
P(T, 1) = 57 INZ(T, ), (T, k) o p(T, 1) (2.8)

At the stage of chemical freezeout, the number of produceit|es is conjectured to be fixed
and the produced resonances are assumed to complete ttejsdether to stable particles or to
other resonances. Accordingly, the contributions$-tbf stable particle or resonance to the number
density, Eq. (2.8), for instance, have to take into accootit possibilities [9]

(nfed(T,p)) = (nidireCt(Ta“)>+;bj—ﬂnj(T?“)? (2.9)
IE4]

wherebj_,; is the branching ratio of-th resonance decaying intgh stable particle or resonance.
Great details about the hadron resonance gas (HRG) moddlectaken from the recent review
article [1], in which extensive statistics was assumed]usieely. Also, more details about the
proposed generic (non)extensive approach can be foundfif@ke

3. Resultsand conclusions

The baryon-to-pion ratios,/fr, p/mt", A/, =/, Z/m", Q/m, andQ/ " measured in
most central Au-Au collisions at,/Syv = 200 GeV (open symbols with errors) are fitted by HRG
with generic nonextensive statistics (solid lines). Thasecompared with extensive HRG (dashed
lines) [1]. Both results are depicted in the left-hand paridtig. 1. The thermal fits of the same



Abdel Nasser Tawfik

=200 Gev
©=0.972
=095

(@)

z b A
u w f

ind

2

2
0

Vo2

c
d=

10323

A

)
T

A

ind

Fig. 1: Comparison of the results from our nonextensive HRG model/idoious baryon-to-pion ratios (lines) with
experimental measurements (open symbols with errors) & REft-hand panel) and LHC (right-hand panel).

| | V3nGeV|TMeV|uMev]| ¢ | d | x%dof |
Extensive 200 16065 | 24.95 - - 151
2760 15309 2.52 - - 3.16
Nonextensive, 200 15624 | 2230 | 0.972| 0.95 1.35
2760 16171 2.52 1.011| 1.0323| 3.18

Tab. 1: Nonextensive and extensive fit parameters.

set of particle ratios measured in most centra-Pb collisions at/Syy = 2760 GeV to extensive
and generic-nonextensive HRG calculations are presentdukiright-hand panel. The resulting
nonextensive and extensive fit parameters at both collesi@ngies are listed in Tab. 1.

We observe that the various baryon-to-pion ratios are wpliaduced by the HRG model with
generic nonextensive statistics. Furthermore, we noliaethe resulting freezeout parameters are
very compatible with each others. This means that the (xéemsivity is not necessarily related
to radical changes in thermodynamic quantities, such apagature, but rather to the equivalent
class(c,d). Last but not least, the resultirgandd mean that the nonextensivity in the particle
production is neither BG nor Tsallis. ¢f> 1 andd > 1, the generalized entro®[p] = zi'\'zlg(pi)
is no longer maximal for an equi-distribution = 1/N. If c < 1 andd < 1, §[p] is given by
LambertW exponentials.
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