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electroweak corrections to the H → hh partial decay width within this model.

KA-TP-37-2016, LPSC16258, LPT-Orsay-16-76

38th International Conference on High Energy Physics
3-10 August 2016
Chicago, USA

∗Speaker.

c© Copyright owned by the author(s) under the terms of the Creative Commons
Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0). http://pos.sissa.it/

mailto:chalons@lpsc.in2p3.fr
mailto:david.val@kit.edu
mailto:Tania.Robens@tu-dresden.de
mailto:tistefan@ucsc.edu


P
o
S
(
I
C
H
E
P
2
0
1
6
)
1
1
8
0

The Higgs singlet extension at LHC Run 2 T. Robens

1. The model and dominant constraints on the parameter space

The simplest extension of the Standard Model (SM) Higgs sector, where an additional real
scalar field is added [1, 2, 3], is a widely explored benchmark scenario for experimental searches
at the LHC [4]. The model contains a complex SU(2)L doublet, denoted by Φ, and a real scalar
S which is a singlet under the SM gauge group. The most general renormalizable Lagrangian
compatible with an additional Z2 symmetry contains the scalar potential V (Φ,S) = −m2Φ†Φ−
µ2S2 + λ1(Φ†Φ)2 + λ2S4 + λ3Φ†ΦS2. In the unitary gauge, the Higgs fields are given by Φ ≡(

0 h̃+v√
2

)T
, S ≡ h′+vs√

2
, with v, vs denoting the non-zero vacuum expectation values of the doublet

and singlet, respectively. The above potential leads to mixing between the gauge eigenstates via
the mixing angle α , such that h = cα h̃− sα h′, H = sα h̃+cα h′, with sα (cα) ≡ sinα (cosα). We
here use the convention that mh ≤ mH , and choose as input parameters mh, mH , sinα, v, tanβ ≡ v

vs
,

where v ∼ 246GeV. One of the scalar masses is fixed to ∼ 125GeV. The above mixing induces
a rescaling of the SM-like Higgs couplings at tree level by sinα (cosα) for h (H), with respect to
the couplings for a SM Higgs boson of that mass. Furthermore, it features a genuinely new decay
mode whenever the channel H → hh opens up kinematically. See e.g. [5, 6, 7] for further details.

Both theoretical and experimental constraints determine viable regions of the models pa-
rameter space, cf. [5, 6, 7]. Limits on the mixing angle for cases where the second scalar is
heavier than 125GeV mainly result from (i) direct search limits, which we implemented using
HiggsBounds (version 4.3.1) [8, 9, 10], (ii) Higgs signal strength measurements, either imple-
mented via HiggsSignals (version 1.4.0) [11] or taken as a direct limit from the combined
Higgs signal strength measurement [12], (iii) the precision calculation of the W -boson mass within
this model [13], as well as (iv) limits from perturbativity of the couplings. A summary of all con-
straints is given in Fig. 1. Production cross-sections for the 14 TeV LHC, after all constraints have
been taken into account, can reach up to 10pb for the total rate of all SM final states and up to 0.5
pb for hh final states. Specific benchmarks for all mass ranges allowed by the limits in Fig. 1 have
been presented in [7, 4].

2. Renormalization

The complete electroweak renormalization of the model has been discussed in [16], where we
applied a non-linear gauge fixing prescription implemented within the SLOOPS framework (see e.g.
[17, 18]), to study gauge-parameter dependence of several schemes. We found that an improved
On-shell scheme, specified by the off-diagonal mass counterterm δm2

hH = ReΣhH(p2
∗)

∣∣
ξW =ξZ=1,δ̃i=0

with p2
∗ = m2

h+m2
H

2 , exhibits the cleanest theoretical and numerical properties. We apply it to com-
pute the one-loop electroweak corrections to the decay width ΓH→hh. Once all present constraints
on the model are included, we find mild NLO corrections, typically of few percent, with theoretical
uncertainties on the per mille level. Sample results are displayed in Fig. 2.
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Figure 1: Maximal allowed values for |sinα| in the high mass region, mH ∈ [130,1000]GeV, from preci-
sion calculations of the W -boson mass (red, solid) [13], electroweak precision observables (EWPOs) tested
via the oblique parameters S, T and U (orange, dashed), perturbativity of the RG-evolved coupling λ1 (blue,
dotted), evaluated for an exemplary choice tanβ = 0.1, perturbative unitarity (grey, dash-dotted), direct
LHC Higgs searches (green, dashed), and the Higgs signal strength (magenta, dash-dotted). Taken from
[7]. More recent collider results (see e.g. [14, 15]) are not included and can potentially influence the region
where mH . 400GeV.
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Figure 2: NLO corrections to the H → hh partial decay width, for fixed sinα, tanβ values and mh (left) or
mH (right) being the 125 GeV resonance measured at the LHC, as a function of the second scalar mass. We
display the total decay width for H → hh, we display the total decay width, along with its relative one-loop
correction. The yellow region is excluded by perturbativity. Note: tanβ is defined as vs

v in this case, in
contrast to the definitions given above. Taken from [16].
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