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We consider the measurement of the trilinear couplings of the neutral Higgs bosons (H0,h0) in

the minimal supersymmetric standard model (MSSM) at a high energy e+ e− linear collider in the

light of the discovery of a Higgs boson at the CERN Large Hadron Collider (LHC). We identify

the state observed at the LHC with the lightest CP-even Higgs boson of the MSSM. We implement

this constraint, as well as all the other relevant experimental constraints, on the parameter space of

the MSSM in order to study the feasibility of measuring the trilinear couplings of the neutral Higgs

bosons. For the measurement of trilinear couplings, we consider the multiple Higgs production

processes. We delineate the regions of MSSM parameter space where the trilinear couplings of

the neutral Higgs bosons could be measured at a high energy electron-positron collider.
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1. Introduction

The ATLAS and CMS experiments at the CERN Large Hadron Collider (LHC) have discov-

ered a particle with mass about 125 GeV [1] whose properties are consistent with the Higgs boson

of the standard model (SM). To confirm that this particle is the Higgs boson of the SM, one must

measure its couplings to other particles as well as to itself. In the SM, the potential of the Higgs

doublet φ which breaks the SU(2)×U(1) gauge symmetry is written as

V h
SM = λ

(

φ2 −
v2

2

)2

=
m2

h

2
h2 +λ SM

hhh

h3

3!
+λ SM

hhhh

h4

4!
; φ =

1√
2
(0 v+h)T , (1.1)

where h is the physical Higgs boson, and λ SM
hhh = 3m2

h/m2
Z = 5.6454 (in units of (

√
2GF)

1/2m2
Z =

33.77 GeV) and λ SM
hhhh = 3m2

h/m4
Z = 0.00068 GeV−2 (in units of (

√
2GF)m

4
Z =1140.52 GeV2) are

the triple and quartic Higgs couplings, respectively. One must, therefore, measure these couplings

in order to confirm the idea of the spontaneous breaking of the underlying gauge symmetry. Any

deviation from the SM prediction for these couplings will signal the existence of new physics be-

yond SM. Supersymmetry (SUSY)[2] is the leading candidate for the new physics which stabilizes

the Higgs mass against large radiative corrections. The supersymmetric version of the SM, known

as minimal supersymmetric standard model (MSSM)[2] not only solves the naturalness problem

of the SM, but also leads to gauge coupling unification at a large scale (MGUT = 2× 1016 GeV).

Furthermore, the lightest supersymmetric particle, usually the lightest neutralino, could be a pos-

sible dark matter candidate in R- parity conserving models. In the MSSM, there are two Higgs

doublets (H2,H1,) with opposite hypercharge, which break the SM gauge symmetry, and there are

five physical Higgs bosons (h0,H0,A0,H±). In this paper we address the question of the mea-

surement of some of the trilinear couplings of the neutral Higgs bosons h0,H0 at a high energy

electron-positron (e+e−) collider.

2. MSSM Higgs sector and trilinear couplings of h0,H0

In this section we shall consider the trilinear couplings of the CP-even Higgs bosons (h0,H0).

At the tree level the masses of all the Higgs bosons and their couplings can be written in terms of

the mass of the CP-odd Higgs boson mA0 and tanβ =< H0
2 > /< H0

1 >. For the phenomenological

survey, the Higgs sector of the MSSM can be divided into two regions known as non-decoupling

regime and decoupling regime. In the first case, mA0 ≤ 130 GeV, and heavy Higgs (H0) is consid-

ered as SM-like (observed) state. On the other hand, decoupling regime is represented by mA0 >

300 GeV, and the light Higgs boson (h0) is identified with the observed 125 GeV Higgs boson. We

shall here focus on the decoupling scenario. The mass matrix for the CP-even Higgs bosons of the

MSSM can be written as

M
2 =

[

m2
A0 sin2 β +m2

Z cos2 β −(m2
Z +m2

A0)sinβ cosβ

−(m2
Z +m2

A0)sin β cosβ m2
A0 cos2 β +m2

Z sin2 β

]

+
3g2

16π2m2
W

[

∆11 ∆12

∆12 ∆22

]

, (2.1)

where the radiative corrections ∆i j are sensitive, besides other parameters, to the top-stop masses.

Other parameters that enter the calculations are the the Higgs(ino) parameter µ , and tan β . We

have used CalcHEP [3] for the numerical calculations of the Higgs spectrum. Furthermore, we

have adjusted the trilinear parameter At so as to fix the mass of the lightest Higgs (mh0) in the range

122−128 GeV. In Fig. 1 (left panel) we show the variation of the CP-even heavy Higgs mass (mH0 )

as a function of the parameter µ for fixed values of the supersymmetry breaking scale (MS) and
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tan β . We see from this Fig. that the heavy Higgs mass is weakly dependent on MS for fixed value of

tan β . Now coming to the Higgs self couplings, assuming CP-conservation, we have six couplings

amongst the neutral Higgs bosons of the MSSM. These are written as λhhh, λHhh, λhAA, λHAA,

λHHH and λHHh. As in the case of the masses of the Higgs bosons, these trilinear couplings also

obtain significant radiative corrections [4]. We can, then, write these trilinear couplings generically

as λ = λ 0 +∆λ where λ 0 is the tree-level coupling and ∆λ are the radiative correction. In this

study we shall consider only two of these trilinear couplings, namely (in units of (
√

2GF)
1/2m2

Z)

λ 0
hhh = 3cos 2α sin(β +α) and λ 0

Hhh = 2sin 2α sin(β +α)− cos2α cos(β + α), where α is the

mixing angle in the CP-even Higgs sector. These couplings are sensitive to mA0 values of upto

500 GeV. The dependence of the trilinear couplings on the parameter µ is shown in Fig.1.
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Figure 1: The mass of heavier Higgs boson mH0 as a function of µ parameter for fixed tanβ and MS(left

panel); variation of radiatively corrected trilinear couplings in MSSM with µ parameter(central panel); Feyn-

man diagrams for resonant production of hh, through e+e− → HZ, HA, νeν̄eH ( where H → hh in the final

state) and through non-resonant WW fusion (right panel).

3. Measurement of trilinear couplings

We now discuss the multiple Higgs production processes which can be used to study the tri-

linear couplings involving H0 and h0. We consider the production of heavy Higgs boson through

Higgs-strahlung e+e− → ZH , associated production with CP-odd Higgs boson e+e− → AH , and

WW fusion mechanism e+e− → νeν̄eH (see Fig. 1 (right panel) for Feynman diagrams and [4] for

cross-sections). Multiple light Higgs bosons (h0) can be produced through heavy CP-even Higgs

boson decay. Non- resonant hh pair could also be produced with Z or A [4]. Associated production

of A with h, where A decays to hZ, contributes as the background to the multiple Higgs production

processes. In Fig. 2, left panel, we show the cross-section for e+ e− → ZH , AH , Hνν̄ as a func-
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Figure 2: Cross-section for e+e− → AH,ZH,Ah/2,Hνν̄ as the function of mH0 for
√

s = 500 GeV (left);

the branching fractions for different decay channels of H for both the benchmark points(central and right).

tion of mH0 for
√

s = 500 GeV. We choose two benchmark values for the parameters (µ ,M1,M2)

= (−230,120,240) and (−500,150,300), respectively, so as to include SUSY particles in the final
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state of the heavy Higgs boson decay. In Fig. 2, central and right panel, we show the branch-

ing fractions of heavy Higgs decay into different channels. Second benchmark values have larger

BR(H → hh) because neutralino and chargino spectrum is heavy as compared to the first bench-

mark point. Consequently, BR(H → χ0χ0,χ+χ−) is suppressed. In Fig. 3, for the measurement

of λHhh coupling, we show the contours of σ(H) × BR(H → hh) for
√

s = 500 GeV and
√

s =

1.5 TeV, respectively for the first benchmark point. The decay H → hh is kinematically forbidden

for mA0 ≈ mH0 ≤ 250 GeV, and this branching ratio decreases as we move diagonally upward in

the (mA0, tan β ) plane. The lower left corner of (mA0 , tanβ ) plane is the suitable region to measure

λHhh coupling. The non-resonant WW fusion to hhνeν̄e final state involves both λhhh and λHhh

couplings. Having an estimate of λHhh, we use this process to measure λhhh coupling. We can see

from the Fig. 3, right panel, that the σ(hhνeν̄e) is almost independent of mA0 and tanβ .
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Figure 3: The contours of constant σ(H)×BR(H → hh) (in fb) (left and central panel); the contours of

non-resonant σ(ee → hhνν̄) (in fb) via non-resonant WW fusion (right).

4. Conclusions
We have studied the trilinear couplings of the CP-even Higgs bosons (H0,h0) in the minimal

supersymmetric standard model, and their measurement at a high energy e+e− collider. In doing so

we have identified the resonance observed at the CERN LHC at 125 GeV with the lightest CP even

Higgs boson of the MSSM. By estimating the production cross-section of the various processes

involving multiple Higgs bosons, we have delineated the regions in the (mA0 ,tanβ ) space where

trilinear couplings λHhh and λhhh can be measured at an e+ e− collider. For the coupling λHhh, we

have σ(H)×BR(H → hh)≈ 0.005 fb and 0.04 fb for
√

s = 500 GeV and
√

s = 1.5 TeV, respectively,

and it decreases along the diagonal upward direction in the (mA0 , tanβ ) plane. We estimate the

coupling λhhh through non-resonant WW fusion process. Precise knowledge of neutralino and

chargino masses is crucial in order to determine the trilinear couplings of H0,h0 of the MSSM.
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