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The recent Deep Learning (DL) renaissance has yielded impressive feats in industry and sci-
ence that illustrate the transformative potential of replacing laborious feature engineering with
automatic feature learning to simplify, enhance, and accelerate raw data processing. This docu-
ment overviews current attempts to apply Deep Learning to Event Reconstruction in High Energy
Physics experiments.
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1. Deep Learning

Artificial Neural Networks (NNs) are a biologically inspired means of computation, most com-
monly used in High Energy Physics for probabilistic inference, e.g. signal versus background
classification. A common application is particle identification (PID), where underlying physical
properties of particles are exploited to distinguish them from one another. Current NN-based PID
techniques use single hidden-layer NNs trained on physics observables, e.g. energy loss (dE/dx),
Cherenkov angle, or shower shape, that are painstakingly reconstructed from the raw electronic
readout of particle detectors. In addition to classification, the Universal Approximation Theorem,
which states that single-hidden layer (or shallow) NNs can approximate continuous functions, in-
dicates that NNs are well suited for regression problems, though there is no guarantee that the
parameters of such networks can be learned.

Deep Neural Networks (DNNs), characterized by multiple successive hidden layers, have long
been recognized [1] for their potential for modeling high level abstractions and therefore efficiently
encapsulating complicated tasks. But training DNNs has been difficult, primarily due to the Van-
ishing Gradient Problem [2]: the fact that gradient of early layer parameters are generally small,
making training these layers through minimization of a cost function prohibitively inefficient. In re-
cent years, this problem has been mitigated by new techniques, the emergence of large datasets that
enable training longer, and the evolution of commodity Graphics Processing Units (GPUs) from
fix function to full programmability, providing the computing power to train on large samples.

The world is now in the midst of a renaissance in Machine Learning and Artificial Intelli-
gence, known as Deep Learning. Billion-neutron multi-layer artificial neural networks trained on
raw and sometimes unlabeled data, can now recognize objects, detect human emotion and intent,
play video games, translate between languages, generate mathematical proofs, sometimes better
than humans and most importantly with minimal engineering. Developed in University Machine
Learning labs, DL has led Google, Facebook, and other industry-leading companies to rethink
everything, building Artificial Intelligence teams, software, processors, and cloud services, and
demonstrating impressive feats.

Beyond better performance, new capabilities demonstrated by Deep Learning drive the un-
precedented excitement across various fields and domains. Deep Neural Networks (DNNs), can
learn features from raw data, eliminating need for expensive hand coded feature engineering. They
can find these features in unlabeled data opening new tools for analyzing complex and poorly un-
derstood data. They can generate complex data starting with only examples, enabling simulation
without a model and providing speed when there is a model. They can filter noise and compress
data, find anomalies, and solve problems we do not know how to solve algorithmically.

The first application of DL in HEP demonstrated that (fully-connected) DNNs out-perform
shallow networks in SUSY and Higgs signal versus background classification, deriving new “fea-
tures” from 4-vectors that were not encapsulated in traditional observables [3]. While application
of DNNs to high level data such as 4-vectors, will likely improve the sensitivity of searches and
the precision of measurements, application of DNNs to low level data, perhaps even raw data,
will likely have greater impact. Compared to the laboriously engineered reconstruction algorithms,
DNNs can not only provide better algorithmic performance, but can also reduce the time and cost
of algorithm development while yielding faster algorithms that run efficiently on the newest many-
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core processors and high throughput coprocessors such as GPUs. For decades HEP relied on the
independence of particle physics events (e.g. collisions) to parallelize their workflows at the high-
est level by running many independent instances of their software. The transition to in-event paral-
lelization necessary for data parallel workflows, which better suite new many-core processors and
co-processors, has proven to be difficult. In contrast, the “code” of DNN-based algorithms are en-
capsulated in weights that turn input data to results via linear algebra and other highly parallelized
operations that are already optimally implemented in Deep Learning frameworks and libraries from
the co-processor manufacturers.

2. Feature Learning

Particle physics detectors record the energy deposits left by the relatively long-lived particles
emerging from high-energy collisions in hundreds of millions of instrumented detector elements,
resulting in data that can be analogous to a highly granular image of the particle interactions.
Reconstruction algorithms interpret the raw data, for example voltages from every channel of a
detector component (or sub-detector), under different particle hypothesis, for example electron or
muon, and produce particle candidates with a measurements of the 4-vector and other particle
properties.

Event reconstruction typically consists of a series of algorithms that identify energy deposits
from noise (known as feature extraction), recognize patterns of deposits consistent with a particle
trajectory or interaction (commonly referred to as pattern recognition), combine deposits and mea-
sure properties within each sub-detector (e.g. clustering in calorimeters or track fitting in tracking
detectors), and finally combine information from each sub-detector to form particle candidates.
Developing reconstruction is an time consuming and expensive feature engineering task. For ex-
ample, ATLAS’s reconstruction was developed over a course of two decades at an estimated cost
of $250 million.

Convolutional Neutral Networks (CNNs) are a class of DNNs that are inspired by the visual
cortex and are capable of learning features in audio (1D), images (2D), or video (3D). Each convo-
lutional layer scans a large number of small tensors across the data, using a convolution operation
to detect and note the presence of features in feature maps that are often subsequently reduced
in resolution by pooling to promote shift invariance. Starting in 2014, Deep Convolution Neural
Networks (CNNs) have exponentially improved performance on ImageNet, a one-million image
classification challenge[4], to now super-human performance[5].

The parameters of the CNN’s convolution kernels, which represent feature detectors, are
learned during training. In images, the kernels in the earlier layers respond to changes in color,
while in later layers they are triggered by higher level features such as eyes in face images or
wheels in car images. In the final layers kernels identify full objects such as faces or cars. In many
ways, this hierarchy parallels that of HEP event reconstruction algorithms. And since raw data
from many types of detectors can be naturally represented as images, CNNs are the best candidates
for DNN-based reconstruction algorithms. The first application of CNNs has been in classification
tasks, such as particle identification, in “imaging” detectors such as Time-Projection Chambers
(TPCs), Cherenkov Imaging detectors, and high granularity Calorimeters.
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3. Neutrino Detectors

Since neutrinos only interact weakly, experiments detect them by instrumenting large volumes
of target material such as water, oil, or Liquid Argon and looking Cherenkov light, ionization, or
particle showers that emerge from the neutrino interaction. A large class of neutrino measurement
only require identification of the neutrino flavor (typically electron or muon neutrino, νe or νµ )
and estimation of its energy. When the neutrino interacts via a charge current (CC), the emerging
lepton indicates the flavor. But when the interaction is mediated by neutral current (NC), the
neutrino flavor is not determinable, but photons from neutral pion (π0) decays can be mistaken for
electrons (e) from and charged pions (π±) can be mistaken for muons (µ). Therefore excellent e/π0

and µ/π± is a critical requirement in neutrino experiments.

3.1 Nova Experiment

The first application of CNN in HEP was in the Nova experiment [6], whose far detector is
composed of filled liquid scintillator bars arranged in layers that alternate between horizontal (X)
and vertical (Y ) orientations. They built a Siamese network with two parallel branches each pass-
ing one orientation through 3 inception modules (from GoogleNet[7]) before merging into a final
inception layer. While the neutrino classification performance of their CNN was comparable to
their traditional technique in most cases, they were able to achieve 40% better electron efficiency
for the same background rate, an improvement that can significantly enhance their neutrino oscilla-
tion analyses. Inspecting their CNN, they found features that clearly detected hadronic or muonic
activity.

3.2 LArTPC Experiments

Liquid Argon Time Project Chamber (LArTPC) is the detector technology employed in the
currently running MicroBooNE experiment and the upcoming short and long baseline neutrino
programs. LArTPC allows tracking, calorimetry, and particle identification in one detector, and is
expected to yield 80% neutrino energy with 1% fake rate, roughly twice the efficiency of previous
neutrino experiment. In LArTPC detectors, charged particles from the neutrino interaction ionize
the liquid argon leaving tracks, while electromagnetic and hadronic showers produce cones of
ionizing secondary particles. An electric field drifts the resulting ionization electrons to planes of
parallel wires at one end of the detector. Since the velocity of the drifting electrons are nearly
constant, their arrival time on wires is proportional to the distance to initial ionization location.
Therefore a simple plot of the digitized voltage on every wire versus time produces a detailed image
of tracks and showers that are often easily identifiable by the human eye. Unfortunately, automatic
reconstruction of LArTPC events has proven to be difficult and has yet to be demonstrated. The first
generation of LArTPC experiments, Argoneut and ICARUS, had small data samples and therefore
relied on humans to perform the pattern recognition.

The first application of CNN to LArTPC detectors was performed by Amir Farbin (UTA) using
simulated data from LArIAT testbeam experiment. LArIAT has two planes each consisting of 240
wires 4 mm apart and oriented at ±60deg from the horizontal. The ADCs sample the voltage of
4096 times in an event, yielding 240 by 4096 measurements for each of the two planes. As an
early demonstration, the GoogleNet image classification network was fed with images that stored
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(a) Efficiency for selecting real muons as muons ver-
sus selecting real charged pions as muons. These plot
demonstrate that for muons that larger training sam-
ples yield better performance.

(b) Efficiency for selecting real electrons as electrons
versus selecting real neutral pions as electrons.

the two wire planes of the detector as different color intensities. The time dimension was reduced
to 256 by summing N contagious samples and selecting the 256 wide region with largest charge
deposit. Comparing the CNN performance for different values of N indicated N = 6 was a good
compromise between loss of resolution and ability to fully capture particles in the 256 sample
window. Performance was observed to improve with larger training samples (see figure a), which
were limited to 100,000 events (10% reserved for evaluation) for the early studies. These studies
yielded 6% fake rate for 90% efficiency for electron versus photon classification, 15% fake rate for
90% efficiency for muon versus charge pion classification, 5% (12%) fake rate for 80% efficiency
for charge current versus neutral current classification for electron (muon) neutrinos. Farbin’s effort
has now evolved to a collaboration with computer scientists Pierre Baldi and Peter Sadowski at UCI
to perform particle identification and energy reconstruction in LArIAT experiment. This work is
currently in progress. As an example, fFigure b shows performance of electron versus neutral pion
separation.

The MicroBooNE experiments has also investigated the application of CNNs to LArTPC [9].
They compared the performance of out-of-the-box networks such as AlexNet [10], GoogLeNet [7],
Faster-RCNN [11], Inception-ResNet-v2 [12], and ResNet [13]. Beyond particle and neutrino
identification, they explored using semantic segmentation to identify and separate detector regions
with single particles, neutrinos, and cosmics.

4. Neutrinoless Double Beta Decay

The NEXT experiment aims to search for neutrinoless double beta decay (0νββ ) using high
pressure xenon (HPXe) Gas TPC, read out by SiPMs to produce 3-D images. NEXT relies on topo-
logical signatures to separate signal two electron events from single electron background events
with kinetic energy comparable to the end-point of the 0νββ decay. For their CNN studies [8],
NEXT projected their 3D data into three 2D images which were fed to GoogleNet as a combined
image with three color intensity. They found that CNNs out perform the traditional technique by
factor of 1.2 to 1.6, with potential for further improvement. They also used CNNs to help optimize
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detector design by comparing different detector granularities and relative contribution of physics
processes to degrading performance.

5. Large Hadron Collider

The LHC presents a much more challenge environment than neutrinos experiments for applica-
tion DNN to raw data. Nonetheless, efforts are now underway to apply DNNs to Calorimetry and
Tracking. Beyond improving performance achieving better performance, the hope is that DNNs
will help alleviate the computing challenges of the High Luminosity LHC (HL-LHC) which will
come online in the next decade. Computing costs for HL-LHC are estimated to be at least a factor
of 5 more that current LHC, and likely much more due to the stalling of Moore’s Law.

5.1 Calorimetry

The ATLAS Electromagnetic and Hadronic calorimeters produce 3D images of variable gran-
ularity in η , φ versus depth of energy deposits. Particles, such as photons, are identified by their
characteristic shower profiles, with their energies determined via a weighted fit of layer-wise de-
posits calibrated to test beam and Z decays. Any improvement, for example in photon identification
or energy resolution, can dramatically effect searches and measurements, for example producing
narrower Higgs peaks with less background. Several factors give hope that significant improve-
ments can be achieved with more sophisticated techniques. For example, energy reconstruction in
the LAr Electromagnetic calorimeter currently does not use shower shape information and is not
correcting for variations in the LAr calorimeter’s characteristic accordion structure. Similarly the
hadronic calibration does not use sampling information. Such effects would be naturally exploited
by a CNN.

Another potentially high impact of DNNs to calorimetry is fast showering. Full Geant4 shower
simulation in the ATLAS calorimeter takes of order of an hour. Fast shower techniques such
as shower libraries or high dimensional binning of shower observables generally suffer from in-
tractable memory requirements. DNNs may provide a much more powerful technique. Starting
with examples only, Generative DNNs have been demonstrated to generate new images of faces,
furnished rooms, or text in style of a specific author (e.g. Shakespeare).

5.2 Tracking

Pattern recognition rate in particle tracking scales quadratically with hits in the tracking de-
tector. As a result, tracking in HL-LHC events, where every event will consist of 200 proton
collisions, is one of biggest challenges for the HL-LHC. In addition, some tracking and vertex
finding at 40 MHz bunch-crossing might be required for the trigger. While some are investigating
dedicated hardware, such as GPUs, FPGAs, or associated memory, a group of ATLAS and CMS
physicists are hoping that by presenting the HL-LHC tracking problem as a Machine Learning
challenge (TrackingML) with a prize, solutions arise that scales better with number of hits. One
source of inspiration is DeepMind’s AlphaGo [14] artificial intelligence agent, which was able to
assess positions in the game of Go by looking at the whole board with a DNN instead of performing
a look-ahead tree search.

5



P
o
S
(
I
C
H
E
P
2
0
1
6
)
1
8
0

Event Reconstruction with Deep Learning Amir Farbin

References

[1] Ivakhnenko, Alexey (1965). Cybernetic Predicting Devices. Kiev: Naukova Dumka.

[2] Hochreiter et al., "Gradient flow in recurrent nets: the difficulty of learning long-term dependencies,"
In S. C. Kremer and J. F. Kolen, editors, A Field Guide to Dynamical Recurrent Neural Networks.
IEEE Press, 2001.

[3] P. Baldi, P. Sadowski and D. Whiteson, Nature Commun. 5, 4308 (2014) doi:10.1038/ncomms5308
[arXiv:1402.4735 [hep-ph]].

[4] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng Huang,
Andrej Karpathy, Aditya Khosla, Michael Bernstein, Alexander C. Berg, and Li Fei-Fei.

[5] K. He, X. Zhang, S. Ren, and J. Sun. Deep Residual Learning for Image Recognition. ArXiv e-prints,
December 2015.

ImageNet Large Scale Visual Recognition Challenge. International Journal of Computer Vision
(IJCV), 115(3):211–252, 2015.

[6] A. Aurisano, A. Radovic, D. Rocco, A. Himmel, M. D. Messier, E. Niner, G. Pawloski, F. Psihas,
A. Sousa, and P. Vahle. A Convolutional Neural Network Neutrino Event Classifier. JINST,
11(09):P09001, 2016.

[7] Christian Szegedy et al. Going Deeper with Convolutions. arXiv 1409.4842, 2014.

[8] J. Renner et al. [NEXT Collaboration], arXiv:1609.06202 [physics.ins-det].

[9] MicroBooNE Collaboration, “Convolutional Neural Networks Applied to Neutrino Events in a Liquid
Argon Time Projection Chamber”, MicroBooNE-NOTE-1019-PUB.

[10] Alex Krizhevsky et al. Imagenet Classification with Deep Convolutional Neural Net- works. NIPS 25,
pages 1106âĂŞ1114, 2012.
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