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CPT Symmetry Without Hermiticity
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In the literature the CPT theorem has only been established for Hamiltonians that are Hermitian.
Here we extend the CPT theorem to quantum field theories with non-Hermitian Hamiltonians.
Our derivation is a quite minimal one as it requires only the time independent evolution of scalar
products and invariance under complex Lorentz transformations. The first of these requirements
does not force the Hamiltonian to be Hermitian. Rather, it forces its eigenvalues to either be
real or to appear in complex conjugate pairs, forces the eigenvectors of such conjugate pairs
to be conjugates of each other, and forces the Hamiltonian to admit of an antilinear symmetry.
The latter requirement then forces this antilinear symmetry to be CPT , with Hermiticity of a
Hamiltonian thus only being a sufficient condition for CPT symmetry and not a necessary one.
CPT symmetry thus has primacy over Hermiticity, and it rather than Hermiticity should be taken
as a guiding principle for constructing quantum theories. With conformal gravity being a non-
Hermitian theory, our approach allows us to construct a positive, ghost-free norm for the theory,
to thereby establish the unitarity of conformal gravity. Since our approach allows for complex
energies and decays, our work justifies the use of the CPT theorem in establishing the equality
of the lifetimes of unstable particles that are charge conjugates of each other. In the quantum-
mechanical limit where charge conjugation is separately conserved, the key results of the PT

symmetry program of Bender and collaborators are recovered.
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1. Antilinearity and the reality of eigenvalues

Starting in 1998 with the work of Bender and collaborators (see e.g. [1]), it was established
that the eigenvalues of the non-Hermitian Hamiltonian H = p2 + ix3 were all real. This reality was
traced to the existence of an underlying antilinear PT symmetry that H possessed, a symmetry
under which p→ p, x→−x, i→−i. To see the relevance of antilinear symmetry, consider

i∂t |ψ(t)〉= H|ψ(t)〉= E|ψ(t)〉. (1.1)

If we replace the parameter t by −t and multiply by some general antilinear operator A, we obtain

i∂tA|ψ(−t)〉= AHA−1A|ψ(−t)〉= E∗A|ψ(−t)〉. (1.2)

If H has an antilinear symmetry so that AHA−1 = H, then, as first noted by Wigner in his study of
time reversal invariance, energies can either be real and have eigenfunctions that obey A|ψ(−t)〉=
|ψ(t)〉, or can appear in complex conjugate pairs that have conjugate eigenfunctions (|ψ(t)〉 ∼
exp(−iEt) and A|ψ(−t)〉 ∼ exp(−iE∗t)). The converse also holds, since if we are given that
the energy eigenvalues are real or appear in complex conjugate pairs, not only would E be an
eigenvalue but E∗ would be too. Hence, we can set HA|ψ(−t)〉= E∗A|ψ(−t)〉 in (1.2), and obtain

(AHA−1−H)A|ψ(−t)〉= 0. (1.3)

If the eigenstates of H are complete, (1.3) must hold for every eigenstate, to yield AHA−1 =H as an
operator identity, with H thus having an antilinear symmetry. Since all E real is a special case, and
since non-Hermitian Hamiltonians can have a real energy spectrum, we see that antilinearity is a
necessary condition for the reality of an eigenspectrum, while Hermiticity is only sufficient.

2. A Simple Example

Consider the PT symmetric matrix M(s) (P = σ1 and T is complex conjugation K)

M(s) =
(

1+ i s
s 1− i

)
. (2.1)

Even though this M(s) is not Hermitian, its eigenvalues are given by E± = 1±(s2−1)1/2, and both
of these eigenvalues are real if s is greater than one. Moreover, these eigenvalues come in complex
conjugate pairs if s is less than one. Finally, if s = 1, then after the similarity transformation(

1+ i 1
1 1− i

)
→
(

1 0
i 1

)(
1+ i 1

1 1− i

)(
1 0
−i 1

)
=

(
1 1
0 1

)
, (2.2)

one can readily check that there is only one eigenvector, viz. (̃1,0) where tilde denotes transpose,
despite there being two solutions to |M(1)− λ I| = 0 (both with λ = 1). M(1) is thus a non-
diagonalizable Jordan-block matrix, to thereby provide an explicit example of a non-Hermitian
operator whose eigenvalues are all real.

As well as see the generic pattern of eigenvalues, we also see that by varying parameters
we can continue from one realization of antilinear symmetry to another, crossing through, and in
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fact necessarily crossing through, the Jordan-block case on the way, as the transition from all real
eigenvalues to complex pairs must be singular. For both s > 1 and s < 1 M(s) has a complete
set of eigenvectors and can be diagonalized, with its diagonal form being Hermitian when s > 1.
When s > 1 M(s) is thus “Hermitian in disguise", with the utility of antilinear symmetry being that
without it, it is guaranteed that a Hamiltonian is not Hermitian in disguise.

The Jordan-block situation is a case where the Hamiltonian is manifestly non-diagonalizable
and thus manifestly non-Hermitian and yet all eigenvalues are real. While Hermiticity implies
reality of eigenvalues, reality of eigenvalues does not imply Hermiticity or even Hermiticity in

disguise. The conformal gravity theory with action IW = −αg

∫
d4x(−g)1/2Cλ µνκCλ µνκ where

Cλ µνκ is the Weyl conformal tensor also falls into the Jordan-block category [2, 3, 4], and possesses
no ghost states of negative norm at the quantum level because of it (the appropriate norm for the
theory is the left-right norm discussed below, and it is non-negative [2, 3, 4]), to thus provide a
fully consistent and unitary quantum theory of gravity without any need for string theory.

3. Probability Conservation

Consider a right eigenstate of H in which H acts to the right as i∂t |R(t)〉 = H|R(t)〉 with
solution |R(t)〉= exp(−iHt)|R(0)〉. The Dirac norm

〈R(t)|R(t)〉= 〈R(0)|exp(iH†t)exp(−iHt)|R(0)〉 (3.1)

is not time independent if H is not Hermitian, and would not describe unitary time evolution.
However, this only means that the Dirac norm is not unitary, not that no norm is unitary. Moreover,
since i∂t |R(t)〉= H|R(t)〉 only involves ket vectors, there is some freedom in choosing bra vectors.
So let us introduce a more general scalar product 〈R(t)|V |R(t)〉 with some as yet to be determined
V , which we take to be time independent. We find

i∂t〈R j(t)|V |Ri(t)〉= 〈R j(t)|(V H−H†V )|Ri(t)〉. (3.2)

Thus if we set V H −H†V = 0, then all scalar products are time independent and probability is
conserved (and V will indeed be time independent if H is). For the converse, we note if we are
given that all V scalar products are time independent, then if the set of all |Ri(t)〉 is complete we
would obtain V H−H†V = 0 as an operator identity. The condition V H−H†V = 0 is thus both
necessary and sufficient for the time independence of the V scalar products 〈R(t)|V |R(t)〉.

Since V obeys V H −H†V = 0, V depends on the particular Hamiltonian. Thus unlike the
Dirac norm, the theory dynamically determines its own norm each time. This is just like general
relativity (gµν metric determined dynamically) vis a vis special relativity (Minkowski ηµν metric
preassigned). For the matrix M(s) for instance, we can explicitly construct the V (s) operator:

V (s) =
1

(s2−1)1/2

(
s −i
i s

)
, V (s)M(s)V−1(s) = M†(s), (3.3)

and expressly note that V (1) is singular (Jordan-block case).
If V H −H†V = 0, we can set V H|ψ〉 = EV |ψ〉 = H†V |ψ〉. Consequently H and H† have

the same set of eigenvalues, i.e. for every E there is an E∗. Eigenvalues are thus either real or in
complex conjugate pairs. Thus as shown above, H must have an antilinear symmetry.
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To reinforce the point we note that if |Ri(t)〉 is a right-eigenstate of H with energy eigenvalue
Ei = ER

i + iE I
i , in general we can write

〈R j(t)|V |Ri(t)〉= 〈R j(0)|V |Ri(0)〉e−i(ER
i +iEI

i )t+i(ER
j −iEI

j)t . (3.4)

Since V has been chosen so that the 〈R j(t)|V |Ri(t)〉 scalar products are time independent, the only
allowed non-zero norms are those that obey

ER
i = ER

j , E I
i =−E I

j , (3.5)

with all other V -based scalar products having to obey 〈R j(0)|V |Ri(0)〉 = 0. We recognize (3.5)
as being precisely none other than the requirement that eigenvalues be real or appear in complex
conjugate pairs, with H thus possessing an antilinear symmetry.

Ordinarily in discussing decays one only keeps modes with negative imaginary part E I . How-
ever now we keep both decaying and growing modes, with probability being conserved since the
only transitions allowed by (3.5) are those in which the decaying mode couples to its growing part-
ner, so that as the population of the decaying mode decreases, the population of the growing mode
increases accordingly. Also with U = e−iHt obeying U−1 = eiHt =V−1eiH†tV =V−1U†V unitarity
is generalized to the non-Hermitian case.

With V H−H†V = 0 and i∂t |R〉 = H|R〉, we obtain −i∂t〈R|V = 〈R|H†V = 〈R|V H. We thus
identify left-eigenvectors 〈L| = 〈R|V , with 〈L(t)|R(t)〉=〈L(0)|eiHte−iHt |R(0)〉=〈L(0)|R(0)〉. For a
non-Hermitian H we should use the left-right norm, with it being the most general one possible
that is time-independent. Probability conservation thus implies antilinearity not Hermiticity.

4. Complex Lorentz Invariance

Is there any particular antilinear symmetry that might be preferred? We can get real eigen-
values without assuming Hermiticity. We can get probability conservation without assuming Her-
miticity. So can we get the CPT theorem without assuming Hermiticity. Yes, if we impose complex
Lorentz invariance. And if we can get the CPT theorem without Hermiticity, then since energies
can then come in complex conjugate pairs, we can now justify the application of the CPT theorem
to decays and unstable states such as in the K meson sector, since if one assumes Hermiticity as in
the standard derivation of CPT theorem, there then are no decays.

Lorentz transformations are of the form Λ = eiwµν Mµν with six angles wµν = −wνµ and six
Lorentz generators Mµν =−Mνµ that obey

[Mµν ,Mρσ ] = i(−ηµρMνσ +ηνρMµσ −ηµσ Mρν +ηνσ Mρµ). (4.1)

Under a Lorentz transformation the line element transforms as

xα
ηαβ xβ → xα

Λ̃ηαβ Λxβ , (4.2)

with Λ̃ = eiwµν M̃µν . Given the Lorentz algebra, one has eiwµν M̃µν ηαβ = ηαβ e−iwµν Mµν (Minkowski
metric orthogonal), with the line element thus being invariant. While this analysis familiarly holds
for real wµν , since wµν plays no explicit role in it, the analysis equally holds if wµν is complex.
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For a general zero spin Lagrangian L(x) where wµνMµν acts as wµν(xµ pν − xν pν), i.e. as

2wµνxµ pν , under an infinitesimal Lorentz transformation the action I =
∫

d4xL(x) transforms as

δ I = 2wµν

∫
d4xxµ∂νL(x) = 2wµν

∫
d4x∂ν [xµL(x)], (4.3)

to thus be a total derivative and thus be left invariant. Since the change will be a total derivative
even if wµν is complex, we again have invariance under complex Lorentz transformations.

For spinors ψ we cannot use ψ† since we would then have to use Λ† = e−i[wµν ]∗M†
µν . So instead

we use Majorana spinors and work in the Majorana basis of the Dirac gamma matrices where
C = γ0 and all four γµ are pure imaginary, since in that basis Majorana spinors are self conjugate.
In Grassmann space one has a line element ψ̃Cψ where C effects CγµC−1 =−γ̃µ and thus effects
CMµνC−1 =−M̃µν . We thus obtain

ψ̃Cψ → ψ̃eiwµν M̃µνCeiwµν Mµν ψ = ψ̃Ce−iwµν Mµν eiwµν Mµν ψ = ψ̃Cψ. (4.4)

So once again we have invariance under complex Lorentz transforms and not just under real ones.
For a general Dirac spinor we set ψ = ψ1 + iψ2 with ψ1 = ψ

†
1 , ψ2 = ψ

†
2 . Then under charge

conjugation we obtain Ĉψ1Ĉ−1 = ψ1, Ĉψ2Ĉ−1 = −ψ2 (the hat denotes quantum operator). Thus
we first set ψ̄ψ = ψ†γ0ψ = (ψ̃1− iψ̃2)C(ψ1 + iψ2) and then apply a Lorentz transformation, to
thus obtain invariance under complex Lorentz transformations. In the Majorana basis of the gamma
matrices P̂, T̂ , and ĈP̂T̂ implement

P̂ψ(~x, t)P̂−1 = γ
0
ψ(−~x, t), T̂ ψ(~x, t)T̂−1 = γ

1
γ

2
γ

3
ψ(~x,−t),

ĈP̂T̂ [ψ1(x)+ iψ2(x)]T̂−1P̂−1Ĉ−1 = iγ5[ψ1(−x)− iψ2(−x)], (4.5)

the last relation of which will prove central below.
If M̂µν = M̂†

µν and wµν is complex, then Λ† = e−i[wµν ]∗Mµν 6= Λ̂−1 = e−iwµν Mµν , and the Dirac
norm 〈R|R〉 → 〈R|Λ†Λ|R〉 is not invariant under a complex Lorentz transform. Thus need some
additional operator that will convert e−i[wµν ]∗M̂µν into e−iwµν M̂µν . It would have to be antilinear in
order to complex conjugate [wµν ]∗. But since it would also conjugate the i factor it would at the
same time have to convert M̂µν into −M̂µν . Because of the factor i in the Lorentz algebra where
[M̂,M̂] = iM̂, the operator that does this is precisely ĈP̂T̂ , with ĈP̂T̂ M̂µν [ĈP̂T̂ ]−1 = −M̂µν . Con-
sequently 〈R|ĈP̂T̂ |R〉 is invariant under complex Lorentz transformations when M̂µν is Hermitian,
while 〈R|VĈP̂T̂ |R〉 is invariant when V M̂µν = M̂†

µνV . This then is how one constructs matrix ele-
ments in general that are invariant under complex Lorentz transformations, and as we see, complex
Lorentz invariance is just as natural to physics as real Lorentz invariance.

5. Relation of CPT to Complex Lorentz Transformations

On coordinates PT implements xµ →−xµ , and thus so does CPT since the coordinates are
charge conjugation even (i.e. unaffected by charge conjugation). With a typical boost in the x1-
direction implementing x′1 = x1 coshξ + t sinhξ , t ′ = t coshξ + x1 sinhξ , on setting ξ = iπ we
obtain

Λ
0

1(iπ) : x1→−x1, t→−t, Λ
0
2(iπ) : x2→−x2, t→−t,

Λ
0

3(iπ) : x3→−x3, t→−t, πτ = Λ
0
3(iπ)Λ

0
2(iπ)Λ

0
1(iπ) : xµ →−xµ . (5.1)
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The complex πτ thus implements the linear part of a PT and thus a CPT transformation on the xµ .
With Λ0

i(iπ) implementing e−iπγ0γi/2 =−iγ0γi in the Dirac gamma space, we can set

π̂ τ̂ = Λ̂
0

3(iπ)Λ̂
0

2(iπ)Λ̂
0
1(iπ) = iγ0

γ
1
γ

2
γ

3 = γ
5,

π̂ τ̂ψ1(x)τ̂−1
π̂
−1 = γ

5
ψ1(−x), π̂ τ̂ψ2(x)τ̂−1

π̂
−1 = γ

5
ψ2(−x). (5.2)

Up to an overall phase, we recognize π̂ τ̂ as acting as none other than the linear part of a CPT
transformation (cf. (4.5)). CPT is thus naturally associated with the complex Lorentz group.

With the Lagrangian density L(x) having zero spin, π̂ τ̂ effects π̂ τ̂L(x)τ̂−1π̂−1 = L(−x) up to
a phase. We will show below that the phase is one. Thus, with K denoting complex conjugation,
when acting on a zero spin Lagrangian we can identify ĈP̂T̂ = Kπ̂ τ̂ . On applying Kπ̂ τ̂ we obtain

ĈP̂T̂
∫

d4xL(x)T̂−1P̂−1Ĉ−1 = K
∫

d4xL(−x)K = K
∫

d4xL(x)K =
∫

d4xL∗(x). (5.3)

Establishing the CPT theorem is thus reduced to showing that L(x) = L∗(x).

6. CPT Theorem Without Hermiticity

Using (4.5) we find that the CPT phases of the independent fermion bilinears (ψ̄ψ , ψ̄iγ5ψ ,
ψ̄γµψ , ψ̄γµγ5ψ , ψ̄i[γµ ,γν ]ψ), and accordingly the phases of all bosons, alternate with spin (i.e.
respectively +1, +1,−1,−1, +1). All net zero spin combinations of fermions and bosons are thus
CPT even. Also all are real [5]. Since probability conservation requires an antilinear symmetry,
it requires K

∫
d4xL(x)K =

∫
d4xL(x). Thus from (5.3) we infer that that L(x) = L∗(x), that all

the numerical coefficients in L(x) are thus real (all zero spin operator combinations already being
real), and that

∫
d4xL(x) is CPT invariant [5, 6]. Thus requiring only probability conservation

and complex Lorentz invariance enables us to extend the CPT theorem to the non-Hermitian
case. Antilinear CPT symmetry thus has primacy over Hermiticity, and it is antilinearity
rather than Hermiticity that should be taken as a guiding principle for quantum theory.

7. Implication for the PT Symmetry Program

In the event that C is separately conserved, CPT invariance reduces to PT invariance, even
if the Hamiltonian is not Hermitian. In such cases we recover the non-Hermitian PT program of
Bender and collaborators, to thus put it on a quite firm theoretical foundation.
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