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1. Highly Inelastic Reactions

There are multiparticle systems consisting of elementary particles with reactions that are
highly inelastic: they produce particles with much larger momenta than the particles in the system
[1]. Some examples are

• a muon beam, from which muons can be lost by the decay µ−→ νµ e− ν̄e,

• wimp dark matter, in which a pair of wimps can annihilate into electroweak gauge bosons,

• an axion star, in which low-energy axions can scatter into relativistic axions through the
reaction aaaa→ aa.

Many important loss processes for ultracold atoms also involve deeply inelastic reactions [2]. Since
the particles from the inelastic reactions have much larger momenta than the particles in the system,
it should be possible to integrate them out and describe the particles of the system by an effective
field theory. What is the appropriate effective field theory? The answer turns out to be somewhat
surprising.

2. Muon decay paradox

For simplicity, we begin by considering a system consisting of nonrelativistic muons. The
muon decay products ν e ν̄ have momenta of order mµ , so the decay is highly inelastic. The decay
proceeds through a highly virtual W , which can propagate only over short distances of order 1/MW .
The W can therefore be integrated out in favor of a contact interaction between µ and ν e ν̄ . Thus
the leptons can be described by a local effective field theory with a 4-fermion interaction.

The reaction µ→ ν e ν̄ is also local in another sense that may not be quite as familiar. A high-
momentum lepton created by the decay has a de Broglie wavelength of order 1/mµ , so the creation
of its wavepacket can be traced back to a region with size of order 1/mµ . The disappearance of
the muon therefore occurs in a region with size of order 1/mµ . The effects of the reaction on
muons can be reproduced by a local operator that annihilates and recreates a muon at a point. The
effective field theory from integrating out the high-momentum leptons has a local non-Hermitian
Hamiltonian:

Heff = H− iK. (2.1)

In a nonrelativistic effective field theory with muon field ψ , the Hermitian operator K in the anti-
Hermitian part is

K = 1
2 Γµ

∫
d3r ψ

†
ψ = 1

2 ΓN, (2.2)

where N is the muon number operator. Note that the muon number operator commutes with the
effective Hamiltonian: [H,N] = 0 and [K,N] = 0.

An effective density matrix ρ for the system of low-energy muons can be defined by tracing
the density matrix ρfull for the full system over states that include high-momentum leptons from
muon decays:

ρ = Trhigh(ρfull). (2.3)
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What is the time evolution equation for this density matrix? An obvious guess is the time evolution
equation implied by the Schrödinger equation with the non-Hermitian Hamiltonian Heff:

ih̄
d
dt

ρ
?
= Heff ρ−ρ H†

eff =
[
H,ρ

]
− i
{

K,ρ
}
. (2.4)

This equation implies that the total probability Tr(ρ) is a decreasing function of time:

d
dt

Tr(ρ) ?
=−ΓµTr(Nρ) =−Γµ〈N〉. (2.5)

The decreasing probability may not be disturbing, given that decays are steadily removing muons
from the system. However the corresponding equation for the mean number of muons, 〈N〉 =
Tr(Nρ), is

d
dt
〈N〉 ?

=−ΓµTr(N2
ρ) =−Γµ〈N2〉. (2.6)

This implies that the muon number in a system with a large number N of muons decreases at a
rate N times larger than the decay rate for a single muon. This is in dramatic contradiction to our
physical intuition that the number of muons in a dilute system must decrease exponentially with
time as exp(−Γµt). Before presenting the resolution of this paradox, we first make a detour into
quantum information theory.

3. Lindblad equation

An arbitrary statistical ensemble of quantum states for a closed system can be represented by
a density matrix ρ . The density matrix is Hermitian: ρ† = ρ . It is positive: 〈ψ|ρ|ψ〉 ≥ 0 for
all nonzero states |ψ〉. These two properties ensure that if the density matrix is normalized so
Tr(ρ) = 1, its eigenvalues can be interpreted as probabilities. If the system is in a pure quantum
state, its density matrix satisfies ρ2 = ρ . The system average of an operator O can be expressed as
the trace of its product with the density matrix:

〈O〉= Tr(ρO). (3.1)

The time evolution of the density matrix can be derived from the Schrödinger equation for the
quantum states:

ih̄
d
dt

ρ = [H,ρ], (3.2)

where the Hermitian operator H is the Hamiltonian for the system. This evolution equation has the
following properties:

1. It is linear in ρ .

2. It preserves the trace of ρ . The total probability Tr(ρ) = 1 is therefore conserved.

3. It is Markovian. The future is determined by the present only, with no additional dependence
on the past history.
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If the operator O has no explicit time dependence, the time evolution of the system average 〈O〉 is
determined by the evolution equation for ρ in Eq. (3.2).

A quantum system that consists of a subsystem of interest and its environment is often referred
to as an open quantum system. Of particular interest is the decoherence of the subsystem due to the
effects of the environment. An effective density matrix ρ for the subsystem can be obtained from
the density matrix ρfull for the full system by the partial trace over the states of the environment.
The density matrix ρfull(t) evolves in time according to Eq. (3.2). Given a specified initial state of
the environment at time t = 0, this evolution equation determines ρ(t) at future times. It is possible
in principle to construct a self-contained differential equation for ρ(t), but it is nonlinear in ρ and
it is non-Markovian: the time derivative of ρ(t) is determined by the present density matrix and
by its history from time 0 to t. The previous history is needed to take into account the flow of
information between the subsystem and the environment.

There are situations in which the time evolution of the effective density matrix ρ for the
subsystem can be described approximately by a self-contained differential equation satisfying the
conditions 1, 2, and 3 itemized above. The Markovian condition requires the time scale for an
observation of the subsystem to be larger than that for correlations between the subsystem and the
environment. This condition can be ensured by a suitable time average of the density matrix
obtained by tracing over the environment. In 1976, Lindblad and, independently, Gorini,
Kossakowski, and Sudarshan showed that the time evolution equation for ρ is strongly
constrained if the conditions 1, 2, and 3 are supplemented by one additional condition [3, 4]:

4. The time evolution of ρ is completely positive.

This condition requires that if ρ is extended to a density matrix on the tensor product of the
subsystem and an arbitrary complex vector space, that density matrix remains positive under time
evolution [5]. Complete positivity ensures that the density matrix for any entangled state of the
subsystem and an environment with which it does not interact evolves into a density matrix that
remains positive. Given conditions 1, 2, 3, and 4, Lindblad and Gorini, Kossakowski, and
Sudarshan showed that the time evolution for ρ must be given by the Lindblad equation [3, 4]:

ih̄
d
dt

ρ = [H,ρ]− i
2 ∑

n

(
L†

nLnρ +ρL†
nLn−2LnρL†

n
)
, (3.3)

where H is a Hermitian operator and the Ln’s are an additional set of operators called Lindblad
operators. An accessible derivation of the Lindblad equation can be found in lecture notes by John
Preskill on Quantum Computation [5]. The Lindblad equation can be expressed in the form

ih̄
d
dt

ρ = [H,ρ]− i{K,ρ}+ i∑
n

LnρL†
n, (3.4)

where the Hermitian operator K is

K =
1
2 ∑

n
L†

nLn. (3.5)

Comparison with the naive evolution equation in Eq. (2.4) reveals that H− iK can be interpreted as a
non-Hermitian effective Hamiltonian for the subsystem. The additional Lindblad term in Eq. (3.4),
whose form is determined by that of K, ensures that Tr(ρ) is conserved.
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4. Muon decay revisited

We now present the solution to the muon decay paradox presented above. An effective
density matrix can be defined by the partial trace in Eq. (2.3) It can be made at least
approximately Markovian by a time average that eliminates transients associated with muon
decays, provided the muon decay products subsequently escape from the system. If we impose
conditions 1, 2, 3, and 4 as reasonable physical conditions on the effective density matrix, its time
evolution must be given by the Lindblad equation:

d
dt

ρ =−i[H,ρ]− 1
2 Γµ

∫
d3r
(
ψψ

†
ρ +ρ ψψ

†−2ψρψ
†). (4.1)

The trace of the right side is 0, so the total probability Tr(ρ) is conserved. Using the commutation
relations [N,ψ] =−ψ and [N,ψ†] = +ψ†, the time derivative of 〈N〉= Tr(Nρ) can be reduced to

d
dt
〈N〉=−ΓµTr(Nρ) =−Γµ〈N〉. (4.2)

Thus 〈N〉 decreases like exp(−Γµt), in accord with our physical intuition.
Some insights into the Lindblad equation can be obtained by considering the probability Pn(t)

for n muons, which can be expressed as a partial trace of ρ: Pn = TrN=n(ρ). Taking the partial trace
of the Lindblad equation, we obtain the evolution equation

d
dt

Pn =−Γµ

[
nPn− (n+1)Pn+1

]
. (4.3)

The term proportional to Pn+1 comes from the Lindblad term in the Lindblad equation. If that
term is omitted, Eq. (4.3) for Pn is essentially that for Tr(ρ) in Eq. (2.5). Thus the naive evolution
equation in Eq. (2.4) can be interpreted as that for a density matrix obtained by projecting onto
states that include no high-momentum particles from inelastic reactions. That density matrix has a
probability that decreases rapidly with time, and it quickly becomes physically irrelevant. The
physically relevant density matrix is obtained instead by tracing over states that include
high-momentum particles, and it satisfies the Lindblad equation in Eq. (4.1).

5. Open effective field theory

It is straightforward to generalize our result for muons to any system with highly inelastic
reactions. The effective Hamiltonian from integrating out the high-momentum particles from the
inelastic reactions has the form H− iK, where the Hermitian operator K is local:

K = ∑
i

γi

∫
d3r Φ

†
i Φi. (5.1)

The local operator Φi annihilates low-energy particles in a configuration that corresponds to the
initial state of a highly inelastic reaction. The operator K is positive if the coefficients γi are positive.
An effective density matrix ρ can be defined by tracing over states that include high-momentum
particles from the highly inelastic reactions and then averaging over a time long enough to eliminate
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transients associated with the decays. The time evolution of the effective density matrix is described
by the Lindblad equation:

d
dt

ρ =−i[H,ρ]−{K,ρ}+2∑
i

γi

∫
d3r ΦρΦ

†. (5.2)

Burgess, Holman, Tasinato, and Williams have shown that the effective density matrix for
super-Hubble modes of primordial quantum fluctuations in the early universe satisfies a Lindblad
equation [6]. They proposed the terminology open EFT for an effective field theory in which the
density matrix satisfies the Lindblad equation. Thus the effective field theory from integrating out
high-momentum particles from highly inelastic reactions is an open EFT. The low-energy particles
are the subsystem of interest in the open quantum system, and the high-momentum particles are its
environment.

The concluding sentence of Ref. [6] was “Now that we have a new hammer, let’s go find
all those nails . . . ”. One such nail is the loss of low-energy axions from an axion star, which is
a gravitationally bound Bose-Einstein condensate of axions. In Ref. [7], the authors proposed a
new loss mechanism in which 3 condensed axions make a transition to a single relativistic axion
through the 4-axion vertex. The condensed axions can be described by a nonrelativistic effective
field theory with a complex field ψ . The 4-axion vertex allows the scattering of 3 low-energy
axions through a single virtual axion, but the amplitude has no imaginary part. Thus there is no
anti-Hermitian term of the form (ψ3)†ψ3 in the effective Hamiltonian density for the open EFT.
Instead the leading mechanism for producing relativistic axions is the scattering of 4 condensed
axions to 2 relativistic axions [8]. The one-loop diagrams for the scattering of 4 low-energy axions
have imaginary parts that correspond to a local anti-Hermitian term in Heff of the form (ψ4)†ψ4.
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