
P
o
S
(
I
C
H
E
P
2
0
1
6
)
3
6
9

Fluctuations and correlations in
finite temperature QCD

René Bellwiede, Szabolcs Borsányia, Zoltán Fodorabc, Jana Günthera, Sándor D.
Katzcd , Attila Pásztor∗a, Kálmán K. Szabóab, Claudia Rattie,
aUniversity of Wuppertal, Department of Physics, Wuppertal D-42097, Germany
bJülich Supercomputing Center, Jülich D-52425, Germany
cEötvös University, Budapest 1117, Hungary
dMTA-ELTE Lendület Lattice Gauge Theory Research Group
eUniversity of Houston, Houston, TX 77204, USA

We calculate fluctuations and correlations of conserved charges in finite temperature QCD. We
also present the equation up to order (µB/T )6. This allows reliable calculations of thermodynamic
quantities up to µB/T ≈ 2, which covers most of the Beam Energy Scan program at RHIC. Our
simulations use staggered quarks with physical quark masses. All of our results are extrapolated
to the continuum limit. This conference contribution is mainly based on the papers [1] and [2].

38th International Conference on High Energy Physics
3-10 August 2016
Chicago, USA

∗Speaker.

c© Copyright owned by the author(s) under the terms of the Creative Commons
Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0). http://pos.sissa.it/



P
o
S
(
I
C
H
E
P
2
0
1
6
)
3
6
9

Fluctuations and correlations in finite temperature QCD Attila Pásztor

1. QCD in the grand canonical ensemble

We calculate fluctuations and correlations of conserved charges in finite temperature QCD at
zero chemical potential using lattice QCD simulations. These are interesting for their sensitivity
to criticality, for probing the composition and distribution of the conserved charges in the QCD
medium, and for providing stringent tests on the hadron resonance gas model at low and resummed
perturbation theory at high temperatures. They can also be used for extrapolation to small finite
chemical potentials. Moreover there is an ongoing effort in the Heavy Ion Experimental community
to measure the moments of conserved charge distributions, which can be related one-to-one to
fluctuations (with some known caveats). For the fluctuations, or generalized susceptibilities, we
use the following notation:

χ
u,d,s,c
i, j,k,l =

∂ i+ j+k+l
(

p/T 4
)

(∂ µ̂u)i(∂ µ̂d) j(∂ µ̂s)k(∂ µ̂c)l χ
B,S,Q
i, j,k =

∂ i+ j+k
(

p/T 4
)

(∂ µ̂B)i(∂ µ̂S) j(∂ µ̂Q)k

where µ̂ = µ/T . The relationship between the chemical potentials:

µu =
1
3

µB +
2
3

µQ µd =
1
3

µB−
1
3

µQ µs =
1
3

µB−
1
3

µQ−µS

allows one to convert the two types of derivatives into each other and write say the χ
B,S,Q
i, j,k as linear

combinations of the χ
u,d,s
i, j,k .These fluctuations then can be used to extrapolate the equation of states

to small but general values of µB,µQ,µS, where we have:

p
T 4 = ∑

i, j,k

1
i! j!k!

χ
BSQ
i jk (T )µ̂ i

Bµ̂
j

S µ̂
k
Q

If we restrict outselves to conditions present in Heavy Ion Collisions, namely 〈nS〉= 0 and 〈nQ〉=
0.4〈nB〉, we get an expansion of the form:

p
T 4 = c0(T )+ c2(T ) · µ̂2

B + c4(T ) · µ̂4
B + c6(T ) · µ̂6

B + . . .

This gives the finite chemical potential equation of state relevant to hydrodynamic simulations of
heavy ion collisions. We will also present results on these coefficients. The equation of state of
QCD at µB = 0 is known for a while [3, 4, 5], and is a standard component of hydrodynamic
description of heavy ion collisions. The corrections at finite density are much harder to calculate
[6, 7]. Our work is an important step in the finite µ direction.

2. The two methods to calculate fluctuations

We will use two distinct method to calculate the fluctuations. First, we can calculate the
µ derivatives directly at zero chemical potentials [8, 9]. This has the advantage that there is no
additional systematic error coming from fitting procedure. However, higher derivatives are very
noisy. This traditional technique finds the c4 and c6 coefficients from the non-Gaussianity of the
fluctuations of conserved charges. In large simulation volumes, however, the central limit theorem
reduces these below the level of detection. With physical quark masses, fine and large lattices one
must seek for an alternative technique.
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The method we use is to simulate at imaginary chemical potential[10, 11, 12, 13, 14], do a fit
for the µ dependence of different observables, and deduce the derivatives at 0 that way. This makes
higher accuracy possible with the same amount of computer time, however it has systematic errors
coming from fitting, as at imaginary µ you have an exact result, containing all orders of the Taylor
expansion. This is illustrated on Figure 1. Such systematic errors are included in all of our result
plots.
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Figure 1: Illustration of the systematic error coming from analytic continuation with different fit ansatzes.
The systematic error coming from the choice of these 3 ansatzes is included in out results.

3. Lattice details

The susceptibilities can be expressed as fermionic matrix traces, that can be evaluated on the
lattice by utilizing a large number of Gaussian random sources. Our continuum extrapolation for
the imaginary chemical potential data is based on the following lattices: 403× 10, 483× 12 and
643×16, in the 4stout staggered discretization. For the details of the lattice action and ensembles
see Ref. [1, 15]. For the zero chemical potential data in the cross-over region we use aspect ratios
between 3 and 4 and temporal extent Nt = 8...24. For temperatures T ≥ 300MeV we do not keep
the lattice geometry constant in our temperature scan, but keep the physical volume constant, with
LTc > 2. So e.g. for Nt = 16 we have the lattices:

643×16 803×16 963×16 1123×16 1283×16
300MeV 360MeV 440MeV 520MeV 600MeV

Keeping the volume large is important for testing perturation theory.
For some observables, like χB

2 , there is a long range of safe linear extrapolation, but observ-
ables that are related to pion physics, like χ

Q
2 , show a strong non-linear 1/Nt dependence, and only

for very fine lattices, Nt ≥ 16 we see a linear regime. No such problem appears for the observables
considered in our imaginary chemical potential runs.

For the imaginary µ runs, the tuning of the chemical potentials such that 〈nS〉= 0 and 〈nQ〉=
0.4〈nB〉 are satisfied is an additional issue. The method used for tuning the strangeness neutrality
condition was first introduced in [16].
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4. Results

On Figure 2 and Figure 3 (left) we show several generalized susceptibilities in finite tem-
perature QCD together with some model predictions. All the observables we consider show an
agreement with the HRG model up to T ∼ 150− 155 MeV The diagonal second derivatives start
to agree with the perturbative results [17, 18] earlier than the off-diagonal derivatives. In the high
temperature range a simular calculation to ours was also presented in [19].

In addition to the HRG we show a naive quasiparticle estimate for the charm susceptibility.
The mass of the charm quark was fitted to the last points (mQP

c = 1430MeV ). The charm quark
mass (mQP

c = 1430 MeV) is empirical, and may depend on the range of the matching to the data.
The quasiparticle model’s results are overestimating the lattice data below approx. 350MeV. This
leaves room for multiple interpretations, like a T -dependent mQP

c , limitations of the quasiparticle
model or bound states absorbing free quarks.

The coefficients cn of the expansion of the pressure in µB, satisfying 〈nS〉 = 0 and 〈nQ〉 =
0.4〈nB〉 cen be seen on the left side of Figure 3.

In ideal hydrodynamics, we have S/N =fixed. These trajectories can be readily calculated
from the equation of state given by the cn coefficients, once the value of S/N is fixed. To fix these
value for the value relevant for the RHIC beam energy scan we used the freeze-out temperature and
chemical potential estimates from Ref. [20]. The resulting trajectories can be seen in the left hand
side of Figure 4. The equation of state along these trajectories is on the right side of Figure 4. The
equation of state can be reliably calculated for µ̂B ≤ 2, or in terms of the RHIC energy scan, for the
center of mass energies:

√
s = 200, 62.4, 39, 27, 19.6, 14.5GeV

For the use of µS and a function of µB and T , determined from our simulations, to Kaon
freeze-out, see Ref. [21].
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Figure 2: Second order susceptibilities (left) and fourth order diagonal susceptibilities(right). Various model
estimates are also shown.
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