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Heavy right handed neutrinos could not only explain the observed neutrino masses via the see-
saw mechanism, but also generate the baryon asymmetry of the universe via leptogenesis due to
their CP-violating interactions in the early universe. We review recent progress in the theoretical
description of this nonequilibrium process. Improved calculations are particularly important for
a comparison with experimental data in testable scenarios with Majorana masses below the TeV
scale, in which the heavy neutrinos can be found at the LHC, in the NA62 experiment, at T2K
or in future experiments, including SHiP, DUNE and experiments at the FCC, ILC or CEPC. In
addition, the relevant source of CP-violation may be experimentally accessible, and the heavy
neutrinos can give a sizable contribution to neutrinoless double β decay. In these low scale lepto-
genesis scenarios, the matter-antimatter asymmetry is generated at temperatures when the heavy
neutrinos are relativistic, and thermal corrections to the transport equations in the early universe
are large.
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Introduction - There is compelling evidence that the observable universe does not contain signif-
icant amounts of antimatter, and that the (baryonic) matter is the remnant of a tiny matter-antimatter
asymmetry in the primordial plasma that survived after mutual annihilation of all particles and an-
tiparticles, see e.g. Ref. [1] for a review. This baryon asymmetry of the universe (BAU) is com-
monly expressed in terms of the net baryon-to-photon ratio ηB = nB/nγ ' 6×10−10. It cannot be
explained within the Standard Model (SM) of particle physics and has to be generated dynamically
via baryogenesis if the radiation dominated epoch started with ηB = 0, as suggested by many mod-
els of cosmic inflation. A particularly economic solution to the baryogenesis problem that relates
ηB to the observed neutrino masses and mixings is given by leptogenesis [2]. Consider the minimal
extension of the SM Lagrangian LSM by n heavy Majorana neutrinos Ni,

L = LSM +
1
2

N̄i(i∂/−Mi j)N j−Y ∗ia ¯̀aεφPRNi−YiaN̄iPLφ
†
ε

†`a, (1)

with Ni = Nc
i , where the superscript c denotes a charge conjugation. The Ni interact with the SM

only via their Yukawa interactions Yia with the SM lepton doublets `a (a = e,µ,τ) and the Higgs
field φ . Here ε is the antisymmetric SU(2)-invariant tensor with ε12 = 1. In the (type I) seesaw
model (1), the same particles Ni that generate the light neutrino mass matrix

mν =−v2Y ∗M−1Y † =−θMθ
T (2)

via the seesaw mechanism [3] can produce a lepton asymmetry via their CP violating interactions
in the early universe, which is transferred into a BAU via electroweak sphaleron processes [4]. Here
θai = vY †

aiM
−1
i (with a = e,µ,τ) are the active-sterile neutrino mixing angles at low energies, and

v = 174 GeV is the Higgs vev. Various different authors have studied different implementations
of this idea, which are e.g. summarised in the reviews [5–7] and references therein. Here we only
summarise recent developments in the field and give references for further reading.

One can qualitatively distinguish two ways to generate the BAU in the minimal model (1),
either in the decay of the right handed neutrinos (freeze out scenario or “thermal leptogenesis”)
[2], or in CP violating oscillations during their production (freeze in scenario or “baryogenesis
from neutrino oscillations”) [8, 9]. Which one of them is realised depends on the masses Mi of
the Ni. For Mi� v, the right handed neutrinos come into equilibrium, freeze out and decay long
before electroweak sphalerons freeze out at T ' 130 GeV. In this case the final asymmetry ηB that
can be observed today is usually created in the decay of the lightest right handed neutrino. This
scenario generically requires Mi > 109 GeV [10] unless the Ni mass spectrum is highly degenerate
[13], leading to resonant leptogenesis [14]. For Mi < v, the seesaw relation (2) implies that at least
some of the Yai are much smaller than the electron Yukawa coupling. In this case a ηB 6= 0 freezes
in because the heavy neutrinos do not reach thermal equilibrium before sphaleron freezeout.

Leptogenesis is usually described in terms of momentum averaged semiclassical Boltzmann
equations of the form

xH
dYN

dx
= −ΓN(YN−Y eq

N ) (3)

xH
dYB−L

dx
= (εΓ

D
N + ε

′
Γ

S
N)(YN−Y eq

N )− cW ΓNYB−L. (4)
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Here YN is the abundance of heavy neutrinos and YB−L the total B−L charge (both normalised to the
cosmic entropy density), H is the Hubble rate, ΓN = ΓD

N +ΓS
N the thermal production rate of heavy

neutrinos, including contributions from decays and inverse decays (ΓD
N) as well as scatterings (ΓS

N),
and cW ΓN is the washout rate. The parameters ε and ε ′ measure the difference between the rates for
processes involving leptons and antileptons, normalised to their sum, and cW is a numerical factor
that is governed by the ratios of the number densities of heavy neutrinos and SM leptons, which is
of order unity if all particles are near thermal equilibrium. We use x = M/T as time variable, where
T is the temperature and M an appropriately chosen mass scale (usually the mass of the lightest
heavy neutrino). This description has been refined in various ways in recent years.

First principles derivation of kinetic equations - The generation of a matter-antimatter asym-
metry in leptogenesis is a pure quantum effect, as it relies on a CP violating quantum interference.
It is not obvious that semiclassical Boltzmann equations, which are commonly used in cosmology,
are suitable to describe this process in the dense primordial plasma quantitatively [15]. This has
motivated efforts to study leptogenesis from first principles of quantum field theory [16–19], in par-
ticular in the resonant case [20–26] and in the context of flavour effects [26, 27] and in the freeze
in scenario [28, 29]. When all coupling constants are perturbative, then the first principles treat-
ment at leading order reproduces the density matrix formalism [9, 30] commonly used in neutrino
physics, assuming that the necessary resummations of all thermal corrections to the dispersion re-
lations and rates are taken into account. The first principles approach provides a systematic way to
calculate the coefficients in these equations that is inherently free of double counting problems, and
in principle it allows to compute corrections to the leading order result (though this is practically
challenging).

Momentum averaging - The effect of the momentum averaging has been studied systematically
in Refs. [31, 32]. It was found that the averaged equations are accurate up to corrections between
∼ 10% (for M > T ) and order one (for M < T ). In the non-relativistic regime M > T , it has been
shown that it is convenient to use the moments of the Ni distribution function as dynamical variables
[33] (instead of the occupation numbers for individual momentum modes). Compared to tracking
individual momentum modes, one can achieve the same accuracy with much less computational
effort.

Quasiparticle dispersion relations - The dispersion relations of (quasi)particles in a hot plasma
can considerably differ from those in vacuum. In the context of leptogenesis, this issue has been
investigated in Ref. [34] and, in more detail, in Refs. [18, 24, 35–39]. In the freeze out scenario
with strong washout, thermal corrections are small. In the weak washout regime with T > M and
in the freeze in scenario, where the BAU is generated at T �M, they have to be taken into account
[9, 28, 29, 40–45]. At tree level, the larger “thermal mass” of the Higgs boson implies that there
exist three qualitatively different temperature regimes: a low temperature regime where the decay
N→ φ` is kinematically allowed, a high temperature regime where the decay φ → N` is allowed,
and an intermediate regime in which no decay is allowed [34, 46] and ΓN vanishes. However, a
consistent resummation of all thermal contributions shows that the inclusion of scatterings lead to
a smooth dependence of ΓN on T , and there is no regime with ΓN = 0 [47]1, see next paragraph.

1This effect may also play an important role in the context of perturbative cosmic reheating [48].
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Flavour effects - If the couplings Yia are of order unity, the seesaw relation (2) suggests Mi > 1014

GeV, and the BAU is generated in the decay of Ni at temperatures T > 1012 GeV (freezeout sce-
nario), at which the SM flavours are indistinguishable ("vanilla leptogenesis"). Then ηB is indepen-
dent of the phases in the light neutrino mixing matrix. For smaller values of Mi and T < 1012 GeV,
the charged lepton Yukawa couplings affect the evolution of leptonic asymmetries, and flavour ef-
fects are relevant [49–54]. In this case (3,4) should be replaced by matrix valued generalisations
[30], which have e.g. been derived in Refs. [9, 26–28, 39, 43, 55, 56]. Flavour effects introduce a
dependence of ηB on the phases in the light neutrino mixing matrix and reduce the lower bound
on non-degenerate Mi for leptogenesis in the freezeout scenario to Mi > 106 GeV [11, 12]. The
intermediate regime between the vanilla scenario and the fully flavoured scenario has been studied
in detail in Ref. [18]. If one wants to achieve successful leptogenesis with even smaller Mi, this
requires a mass degeneracy to ensure a resonant enhancement of ηB. Moreover, sizeable Yia can
only be made consistent with small neutrino masses if there are cancellations in (2). Both can be
achieved naturally in models with an approximate conservation of B−L, where leptogenesis relies
mostly on flavour effects [12, 57]. In the freeze in scenario, the asymmetry is always generated
at T �Mi, where the total lepton number is negligible [8, 9], and baryogenesis relies entirely on
flavour effects.

Thermal production and damping rates - The rate ΓN at T < M is in good approximation
given by the Ni vacuum decay rate [47, 58–62]. For T > M, on the other hand, thermal effects can
dominate. These include quantum statistical factors, modifications of the (quasi)particle dispersion
relations in the plasma and the fact that the Ni can be produced in scatterings in the dense plasma.
For T�M, there is a collinear enhancement of multiple scatterings, and the Landau-Pomeranchuk-
Migdal effect should be taken into account [47, 62–64]. The dominant contribution to ΓN in this
regime comes from logarithmically enhanced t-channel scatterings [61, 65].2 In Ref. [66, 67], this
calculation has been extended to temperatures across and below the electroweak scale. Thermal
corrections do not only affect ΓN , but also the washout rate cW ΓN [62, 69] and its flavoured gener-
alisations [61, 67, 70]. In the freeze in scenario, a consistent analysis also requires to include the
temperature dependence of the sphaleron rate across the electroweak crossover [71, 72].

Spectator effects - The effect of spectator processes [73] that do not change the total asymmetry,
but reshuffle it between different degrees of freedom, has recently been revisited in both, the freeze
out [74] and freeze in [28, 29, 45, 75] scenarios. In the latter the spectators ca have a significant
effect on the viable parameter space.

CP violating parameter - Thermal corrections to the CP violating parameter ε have been studied
by several authors [21, 24, 26, 27, 39, 76–78]. A question of particular interest is the dependence
of ηB on the Ni mass spectrum in the regime where the splitting ∆M of two Mi is much smaller
than their average mass M̄, leading to a resonant enhancement that allows to generate the observed
ηB with M̄ below the TeV scale [14]. In the resonant limit ∆M/M̄→ 0, ηB is regularised by the
finite thermal width ΓN . The precise form of the "regulator" that determines the maximal ηB has
been the subject of a long standing dispute [14, 79–83]. The issue has been studied from first

2These calculations have been performed in the minimal model (1). In theories with an extended Higgs sector, there
can be additional contributions from decays of the heavy scalars, see e.g. [68] and references therein.
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principles in Refs. [21, 24, 26, 26, 39, 84], but disagreement on how to count (and not double
count) contributions from "mixing" and "oscillations" of the Ni remains, leading to factors ∼ 2
uncertainty in these contributions. Note that, while parameter relevant for the enhancement of the
source for the total lepton asymmetry is M̄2/∆M2, the flavoured source is enhanced by T 2/∆M2,
which allows to generate the observed ηB with Mi below the electroweak scale without a mass
degeneracy [85]. The CP violating phases in the Yia can be experimentally constrained from light
neutrino oscillations at DUNE and NOvA, measurements of the mixings U2

ai = |θai|2 in direct
search experiments [29, 40, 45, 86] and in the CP violation in Ni decays [87].3

Low scale leptogenesis - The experimental perspectives for a discovery of the Ni are most
promising if they have masses Mi below that of the W boson. A discussion of the experimental
constraints and perspectives can e.g. be found in the reviews [6, 7, 29, 89, 90, 90–95] and refer-
ences therein. In this mass range, leptogenesis in the minimal model (1) can only be achieved in
the freeze in scenario.4 Since the generation of the BAU happens at T � Mi, relies on flavour
effects and may continue across the electroweak transition, all effects discussed above are poten-
tially relevant in this scenario. The viable parameter space has been studied in the models with
two [28, 29, 41–45, 75, 97, 98] and three [44, 75, 85, 98, 99] heavy neutrinos. A convenient way
to illustrate the results is given by the projection in the M̄−U2

a plane, where U2
a = ∑i |θai|2. As

an example, we show the M̄−U2
µ in Fig. 1. If any heavy neutral leptons are discovered in the

future, an independent measurement of all U2
ai, which could be done at the SHiP experiment or a

future lepton collider, would provide a powerful test to asses whether these particles are the origin
of neutrino masses and matter in the universe in the minimal seesaw model, see Fig. 2. Together
with an observation of neutrinoless double β decay and CP violation in light neutrino oscillations,
this would impose significant constraints on all model parameters [29, 44, 45, 109].
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Figure 1: Viable leptogenesis parameter space for inverted hierarchy and n = 2 (between the blue lines)
and combined constraints from past experiments (grey area), both as found in Ref. [29]. Here U2 = ∑a U2

a .
We compare this to the expected sensitivity of future searches. The purple lines show the 90% c.l. upper
limits for SHiP assuming 0.1 background events and with 2× 1020 proton target collisions for a ratio of
U2

e : U2
µ : U2

τ ∼ 52 : 1 : 1 [100, 101]. The light blue line marks the sensitivity of a detector length of 30m
placed near the DUNE/LBNE with an exposure of 5×1021 protons on target [102]. The solid olive green line
corresponds to the expected reach of FCC-ee for 1012 Z bosons with a displaced vertex at 10−100cm [103].
The expected sensitivitiy of FCC-ee at 2σ for heavy neutrino searches via displaced vertices is presented
as dashed olive green line. The brown and dark orange lines show the sensitivity of CEPC and ILC, each
at the Z pole run for a center of mass energy mcms = mZ [104]. It is important to point out that the ILC
can potentially do better at higher centre of mass energies [104]. The turquoise line is the expected limit
of the NA62 experiment on U2

µ with 2× 1018 400 GeV protons on target [105]. The red line is the T2K
sensitivity, as estimated in Ref. [106] for 1021 protons on target at 90% c.l. with full volume for both the
K+→ µ+N→ µ+µ−π+ two-body decays (red, solid) and the K+→ µ+N→ µ+µ−e+νe three-body decays
(red, dashed) [106]. Limits on U2

µ can also be obtained from LNV decays of 5×1010 B+ mesons at Belle II
(blue line) and 2×108 W bosons (yellow line) at the FCC-ee [107]. The expected sensitivity at the FCC-ee
from B meson decay is given by the light orange line [107]. The violet lines represent the limits on U2

µ

from displaced lepton jet (solid) and prompt trilepton (dashed) searches for
√

s = 13TeV and 300fb−1 at the
LHC [108].
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