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In mean-field approximation, the SU(4) Polyakov linear-sigma model (PLSM) is constructed in

order to characterize the quark-hadron phase structure in awide range of temperatures and den-

sities. The chiral condensatesσl , σs andσc for light, strange and charm quarks, respectively, and

the deconfinement order-parametersφ andφ∗ shall be analysed at finite temperatures and densi-

ties. We conclude that, the critical temperatures corresponding to charm condensates are greater

than that to strange and light ones, respectively. Thus, thecharm condensates are likely not af-

fected by the QCD phase-transition. Furthermore, increasing the chemical potentials decreases

the corresponding critical temperatures.
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1. Introduction

Quantum chromodynamics (QCD) describes the strong interactions between quarks and glu-
ons. As the temperature decreases or at low densities, the quarks and gluons become confined and
the physical degrees-of-freedom can be dominated by hadrons. By imposing chiral symmetries,
various approaches besides lattice QCD simulations (LQCD)aim at describing the quark-hadron
phase transitions in thermal and dense QCD medium, see for instance Refs. [1, 2]. At vanish-
ing quark masses, the chiral symmetries represent basic properties of the QCD Lagrangian, while
at finite current quark masses, the chiral symmetry is explicitly broken [3] and the QCD phase-
diagram can be described by the first-principle LQCD [4, 5] and various QCD-like approaches. In
charactering SU(2) and SU(3), the Polyakov Nambu-Jona Lasinio (PNJL) model [6, 7, 8] and the
Polyakov linear-sigma model (PLSM) [9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23] have
been implemented. The SU(4) Lagrangian has the same structure as that of SU(3) [9], for instance.
All meson fields should be parametrized in terms of 4×4 instead of 3×3 matrices and the chiral
phase-structures can be studied for mesons having masses upto ∼ 3.5 GeV. The corresponding
quark number susceptibilities and correlations can also beanalysed.

The present work is organized as follows. We utilize mean-filed approximation to the PLSM
with Nf = 4 quarks flavors at finite temperatures and baryon chemical potentials in section 2.
The thermal dependence of the light, strange and charm quarkchiral-condensates,σl , σs, andσc,
respectively, and the corresponding deconfinement order-parameters,φ andφ∗, the Ployakov-loop
fields, shall be discussed in section 3. Section 4 is devoted to the final conclusions.

2. SU(4) Polyakov linear-sigma model

In SU(4)L × SU(4)R symmetries, the LSM Lagrangian [9] can be constructed asLchiral =

Lq+Lm, whereq∈ (u,d,s,c),

Lq = ∑
f

qf

[

iγζ Dζ −gTa(σa+ iγ5πa)
]

qf , (2.1)

andg is the flavor-blind Yukawa coupling [24].ζ is an additional Lorentz index. The pure mesonic
part is given as

Lm = Tr(∂µΦ†∂ µΦ−m2Φ†Φ)−λ1[Tr(Φ†Φ)]2−λ2Tr(Φ†Φ)2+Tr[H(Φ+Φ†)], (2.2)

to which anc-term,c[Det(Φ)+Det(Φ†)], is usually added, whereΦ is a complex 4×4 matrix for
scalar and pseudoscalar mesonsσa andπa, respectively,Φ = Ta(σa + iπa), with Ta = λa/2 with
a= 0, · · · ,N2

f −1 are the generators ofU(4) symmetry group [9].λa are Gell-Mann matrices, while
λ0 = Î/

√
2 [25].

The Polyakov-loop potentials introduces color degrees-of-freedom and gluon dynamics, where
φ andφ∗, LPLSM = Lchiral−U (φ ,φ∗,T) are Polyakov-loop fields. Details about the chiral LSM
Lagrangian forNf = 2 and 3 can be found in Refs. [9, 12, 26, 27]. In the present work, we use
polynomial logarithmic parametrisation potential for thePolyakov-loop fields, [27]

UPolyLog(φ ,φ∗,T)

T4 =
−a(T)

2
φ∗φ +b(T) ln

[

1−6φ∗φ +4(φ∗3+φ3)−3(φ∗φ)2]

+
c(T)

2
(φ∗3+φ3)+d(T)(φ∗φ)2. (2.3)
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The various coefficientsa, c, andd have been determined in Ref. [27],x(T) = [x0+ x1(T0/T)+
x2 (T0/T)2]/[1+x3 (T0/T)+x4(T0/T)2] andb(T)= b0 (T0/T)b1 [1−eb2(T0/T)b3

], with x=(a, c, d).

In mean-field approximation, all fields are treated as constants (averages) in space and imag-
inary time τ . The exchanges between particles and antiparticles shall be expressed as function
of temperature (T) and chemical potential (µ), for instance. Accordingly, grand-canonical par-
tition function (Z ) can be constructed, from which the thermodynamic potential density can be
derivedΩ(T,µ) = Ωq̄q(T,µ)+UPolyLog(φ ,φ∗,T)+U(σl ,σs,σc) = −T lnZ /V. The thermody-
namic antiquark-quark potential,Ωq̄q(T,µ), was introduced in Ref. [7, 28],

Ωq̄q(T,µ) = −2T ∑
f=l ,s,c

∫ ∞

0

d3~P
(2π)3

{

ln

[

1+3

(

φ +φ∗e−
Ef −µ

T

)

×e−
Ef −µ

T +e−3
Ef −µ

T

]

+ ln

[

1+3

(

φ∗+φe−
Ef +µ

T

)

×e−
Ef +µ

T +e−3
Ef +µ

T

]}

. (2.4)

The subscriptsl , s, andc refer to degenerate light, strange and charm quarks, respectively. The
energy-momentum relation is given asEf = (~P2+m2

f )
1/2, with mf being the flavor mass of light,

strange, and charm quark coupled tog [24]; ml = gσl/2, ms = gσs/
√

2 [14], andmc = gσc/
√

2.

The values of the vacuum chiral-condensates are determinedfrom pion, kaon and D-meson
decay widths by means of the partially conserved axial-vector current relation (PCAC) [9, 13]. At
T = 0, the quark condensates readsσl0 = fπ = 92.4 MeV, σs0 = (2 fK − fπ)/

√
2= 94.5 MeV and

σc0 = (2 fD − fπ)/
√

2= 293.87 MeV.

By introducing SU(4)L× SU(4)R symmetries [9], the purely mesonic potential can be driven
in basis of light, strange and charm quark from the mesonic Lagrangian,L . The orthogonal basis
transformation from the original ones:σ0,σ8 andσ15, to the light(σl ), the strange(σs), and the
charm(σc) quark flavor basis

σl =
1√
2

σ0+
1√
3

σ8+
1√
6

σ15, σs =
1
2

σ0−
√

2
3

σ8+
1

2
√

3
σ15, σc =

1
2

σ0−
√

3
2

σ15. (2.5)

Furthermore, one can obtain that

U(σl ,σs,σc) = −hl σl −hsσs−hcσc+
m2 (σ2

l +σ2
s +σ2

c )

2
− cσ2

l σsσc

4
+

λ1 σ2
l σ2

s

2

+
λ1σ2

l σ2
c

2
+

λ1σ2
s σ2

c

2
+

(2λ1+λ2)σ4
l

8
+

(λ1+λ2)σ4
s

4
+

(λ1+λ2)σ4
c

4
. (2.6)

It is noteworthy highlighting that SU(3) pure mesonic potential can be obtained whenσc → 0
and the additional termcσ2

l σs/2
√

2 is subtracted. The latter is stemming from the anomaly term
(known asc-term) added to mesonic potential, Eq. (2.2). All parameters m2, hl , hs, λ1, λ2, and
c have been determined at different sigma masses [9, 12]. The addition parameterhc is related
to the pion- and D-meson masses by Ward identities;hc =

√
2 fDm2

D − fπm2
π/

√
2. In order to

evaluate the PLSM chiral condensatesσl , σs, andσc and the deconfinement order-parametersφ
andφ∗, the real part of thermodynamic potential, Re(Ω), should be minimized at the saddle point;
∂Ω/∂σl = ∂Ω/∂σs = ∂Ω/∂σc = ∂Ω/∂φ = ∂Ω/∂φ∗|min = 0.
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Figure 1: Left-hand panel (a): normalized chiral-condensates are given as functions of temperatures at
different baryon chemical potentialsσl/σl0, σs/σs0, andσc/σc0 (solid, dotted and double-dotted curves) for
light, strange, and charm quark flavors, respectively. Right-hand panel (b): the same as in left-hand panel
but for the deconfinement order-parametersφ andφ∗.

3. Results

The chiral condensatesσl , σs, andσc [left-hand panel (a)] and deconfinement order-parameters
φ andφ∗ [right-hand panel (b)] have been evaluated from global minimization the real part of the
thermodynamic potential at the saddle point. Left-hand panel (a) depicts the normalized chiral
condensates of light, strange, and charm quarks corresponding to their vacuum valuesσl = 92.4,
σs = 94.5, andσc = 295 MeV as functions of temperatures at different baryon chemical potentials
µ = 0, T/2, andµ = T. Right-hand panel (b) shows the Polyakov-loop fieldsφ andφ∗ estimated
from the polynomial logarithmic parametrisation [27] at the different values of the baryon chemical
potentials. It is possible to determine the chiral criticaltemperatures corresponding to light, strange,
and charm quarks. The intersection of the deconfinement order-parametersφ and φ∗ with the
corresponding quark condensate atµ = 0 leads toT l

χ = 174.6, Ts
χ = 283.4, andTc

χ = 575 MeV for
light, strange, and charm quark flavors, respectively. In doing this, we recall the well-know lattice
results that both chiral and deconfinement critical temperatures coincide, especially at vanishing
baryon chemical potential. Alternatively, we might also apply other methods, such as, peaks of
chiral condensates susceptibilities, etc.

Also, we notice the deconfinement order-parametersφ andφ∗ refer to varying critical temper-
atures with varyingµ . While the critical temperature fromφ seems to decrease with increasingµ ,
the one fromφ∗ increases.

4. Conclusion

In determining various PLSM parameters, the pure mesonic potential is formulated forNf = 4.
Accordingly, the extra degrees-of-freedom modify the thermodynamic antiquark-quark potential
and the energy-momentum dispersion relations. The parameters added to the SU(4) model, such as
σc andhc are found identified. We have introduced how the charm quark mass is coupled tog and
the charm quark condensate in vacuum.

We present the temperature dependence of the chiral condensatesσl , σs, andσc and decon-
finement order-parametersφ andφ∗ at varying baryon chemical potentials. We notice the criti-
cal temperatures increases when moving from light to strange to charge quark chiral condensate;

3



P
o
S
(
I
C
H
E
P
2
0
1
6
)
6
3
4

SU(4) PLSM at finite temperature and density Abdel Nasser Tawfik

T l
χ = 174.6, Ts

χ = 283.4, andTc
χ = 575 MeV, respectively. This leads to draw a conclusion that

the charm condensate wouldn’t be affected by the well-knownquark-hadron phase transition. Fur-
thermore, we conclude that increasingµ decreases the correspondingTχ and the dissociation of
hadrons consisting ofc-quarks obviously takes place at higherTχ . The chiral phase-structure of
heavy mesons and the correlations including charm quarks inthermal and dense medium are of
great importance with respect to recent experimental results.
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