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The spherically symmetric Schwarzschild solution is a staple of textbooks on general relativity; not so
perhaps, the static but cylindrically symmetric ones, though they were obtained almost contemporaneously
by H. Weyl, Ann.Phys.Lpz.54 (1917) 117 and T. Levi-Civita, Atti Acc. Lincei Rend. 28 (1919) 101. A
renewed interest in this subject in C.S. Trendafilova and S.A. Fulling , Eur.J.Phys. 32 (2011) 1663 —to
which the reader is referred to for more references — motivates this work; thus, we rework the Antonsen-
Bormann idea — arXiv:hep-th/9608141v1 — that was originally intended to compute the_heat kernel in curved
space, to determine — following D.McKeon and T.Sherry, Phys.Rev.D35 (1987) 3584 — the zeta-function
associated with the Lagrangian density for a massive real scalar field theory in 3 + 1 dimensional stationary
curved space, the metric for which is cylindrically symmetric. As a calculation, it pays to use a metric

characterised by the parameters j,k with j=— 4 and Kk =—4, j,k being integer solutions to

2(j + k) = — Jk . Importantly, this enables — unlike the obvious solution j = 2, k = —1, an easy evaluation

of the momentum integrals implied in the Schwinger expansion for the zeta-function. Happily, the work
reported here is easy to go through — relative to that presented by the author at ICHEP2014 with the
Schwarzschild metric, and this contrast will be taken up in some detail.
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Two integrals and their evaluation

Consider the integral
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with Izjd ’r, sand U being non-negative constants with the latter less than 1; with standard methods
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one easily gets
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As a second example with m = s(1—u),n = us(1—w) let’s calculate
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with IEId ?r ,as before and s,uand Wbeing non-negative constants with each of the latter two less than 1.
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With two Feynman parameters a,bone gets with h=a+b+n, k=a p+bJ,
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The inconvenience inherent to the integration over a,b in (4) suggests a rewrite of eq.(3) as
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and the integral representation for the delta-function now helps to obtain

r2—f~r312—a'i @(F _ 3" -ne*
R (+1e) ¥
where
< db |b(n +|g) H 1 i (n +|5)
== P : 7 '

2i5 = (- (L—ibn)p),ix = (j - (@—rn)p),nr = (L+ibn), g = 4s%,q = x?

and
g - - i -
L(p,i)= A(j, p.5)+e *B(j, 5.5 ,A(j,ﬁ,§)=—(np2+—r> §j1 §+fzj'r>,
a
B(j, p.5)=—A(], m)—%ﬁ s7-5,M(p j)=clj,p.z)+e D(j,p2)
c(j, p.x)= —m(; p- qr) XTX],D(T, ﬁ,i):—c(j,5,x)+§i~x(%+inﬁ-zj (6)

As eq.(5) is easier to work with than (4) and the calculation of J needs just the evaluation of
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it pays to pause the calculation at this stage so as to net more dividends elsewhere with the approach adopted
here.
A physical setting for I and J

Consider the following line element in 3 + 1 dimensional curved space
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with r> = x* + y?, anda a constant. Eq.(8) yields a time — independent, cylindrically symmetric metric

g,, Whose non —zero elements in Cartesian coordinates are
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the others being zero. With g, =17,, eze'vJ , 1, =diag (1—1—1—1) the vierbeins e, — repeated latin and

greek indices are summed from 0 to 3 respectively — can now be worked out and one favours the following
set for its calculational advantage :
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and determine g** = 7°%e*e with 7% = diag(1—1—1—-1). Egs.(1) and (3) can now be motivated with
the Lagrangian density for a real massive scalar field in 3 + 1 dimensional curved space namely,
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Following Antonsen and Bormann [1,2] the operator B = —aﬂ (g‘”@v )— m? associated with (12) is first
reworked as
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in momentum space,with (13) being obtained from the transition to Euclidean space. With the vierbeins in

eqs.(10) and (11) the last term in (13) labelled heretofore as H,worksto H, = 2—Zl(xp1 +yp, )and with
r

H, = p2 +p2—m?,1, = p2 + p one now has e & =e Mo ~o*") with B=H, + I, +H,andsa
scalar. Following McKeon and Sherry [3] the zeta-function ¢ (s) is now defined as
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and one can now write the Schwinger expansion[3,4] to the third order for the operator g ullorH2)
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The integrals | and J are the matrix elements of the third and fourth terms in eq.(15) respectively, they being
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determined as in Ref.3 and the second term likewise works to L =— > I (2 p) = 0.With eq.(2),0ne
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now has the main result of this report — inspired by cylindrical symmetry in 3 + 1 dimensional curved space
using the method of operator regularization[3,4] to 1- loop order — viz.
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with uwz =1,az*> = p® in eq.(16). Parenthetically,a similar derivation has been carried out elsewhere[5] but
with the BTZ metric [6] in 2 + 1 dimensions.

Qualitatively, the calculation presented here is viable relative to that with the spherically symmetric
Schwarzschild metric[7].Put differently, the counterpart of H,above but with the Schwarzschild metric is

far too cumbersome to make an exact evaluation[8] of even the third term in eq.(15) in terms of matrix
elements worthwhile; on the other hand, the exact evaluation of eg.(1) above and its further use to get eq.(16)
here underlines our assertion that with cylindrical symmetry — and an appropriate choice of the vierbeins

eZ— an easier calculation happens. To emphasise this latter remark, note that eq.(8) is just one example of a

more general cylindrically symmetric solution discussed recently by Trendafilova and Fulling[9] namely,
ds? = —r?2dt? + r2@®dr? + r2d6? + r*dz? (17)

with the parametersa,b being solutions of ab = —(a+b). Continuing, it is easy to check that the form

of H, with the appropriate ez for
2
ds? = r—zczdt2 ~Larr _r2de? _b
b b r
with b a constant in (18) has the same infirmity as that with the spherically symmetric metric of
Schwarzschild[7]; in conclusion, egs.(8) and (18) are just special cases of
ds? = ric2dt? —r™dr? —r2dg? —r*dz? (19)
where 2(j + k) = — jk ,but the edge the former has over the latter for the derivation reported here spurs a
second look at (16) using Ref.3 to determine the one-loop corrected propagator in curved space-time; this
will be dealt with elsewhere.

dz® (18)
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