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We study the renormalization group (RG) flow of transport coefficients of a 3+1 dimensional
strongly coupled system using holography. Introducing Gauss-Bonnet corrections in the gravity
system we study the behavior of ac conductivity and diffusion constant using the soft-wall model
of the bottom-up approach. Further we show the dependence of transport coefficients on the
chemical potential of the system.
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Transport Coefficients using Gauss-Bonnet corrections

1. Introduction

AdS/CFT duality (holography) is a remarkable tool to study the dynamics of strongy cou-
pled system.This duality was first introduced by Maldecena [1] showing a correspondence be-
tween N = 4 super Yang-Mills gauge theory in 4 dimensions with type II B string theory in
AdS5×S5 bulk space. Later research and discussions generalised this conjecture to study strongly
coupled systems in other branch of physics like condensed matter physics, quark gluon plasma
(QGP) and cosmology using their weakly coupled dual gravitational system in the large N limit
approximation.[2, 3, 4, 5]

Using holography we work in the soft-wall model and study the behavior of transport coef-
ficients of a 3+1 dimensional system using its dual Einstein-Maxwell system in 4+1 dimensions
with Gauss-Bonnet (GB) corrections. Soft-wall model [6] is a modified form of hard model with a
dilaton field (to introduce the confinement) has successfully depicts the hadron spectra and Regge
trajectory. Applying the soft-wall model for this system we calculate the RG flow of ac conduc-
tivity with varying chemical potential in the probe limit. Frequency dependence of ac conductivity
and the dependence of diffusion constant on GB term has also been shown.

2. Holographic Model and Results

Einstein-Maxwell system with Gauss-Bonnet (RGB) corrections in the soft wall model is given,

S =
∫

d5x
√
−ge−φ

{
1

2κ2 (R−2Λ+λRGB)−
1

4g2 F2
}
, (2.1)

where λ is the Gauss Bonnet Coupling constant and RGB = R2−4RMNRMN +RMNPQRMNPQ. F2 is
the gauge field strength with Fµν = ∂µAν −∂νAµ . Using l = 1 for calculations with cosmological
constant Λ = −6

l2 , the charged black hole solution of the above system is given as,

ds2 =
r2
+

l2u
(− f (u)N2dt2 +

3

∑
i=1

dxidxi)+
l2du2

4u2 f
(2.2)

where N2 = 1
2

(√
1−4λ +1

)
, f (u)= 1

2λ
(1−

√
1−4λ (1−u)(1+u−au2), with a= l2κ2Q2

6g2 , where

charge (Q) and chemical potential(µ) of the black hole is given as Q = 2µ

r+
. Thus we can write

equation of motion as,

Rµν +
1
2

gµνR−Λgµν = 8πTµν (2.3)

∇µe−φ Fµν = 0 (2.4)

taking the linear dilaton profile φ = cu as in [7], with c = 0.388GeV 2. Introducing the metric and
gauge field perturbations (taking hun = 0 and Au = 0 as the gauge condition), gmn = g0

mn + eφ h̃mn

and Am = Am + Ãm.
The Fourier transform of the fields is given as,

h̃mn(t,z,u) =
∫ d4k

(2π)4 e−iωt+ikzhmn(k,u)

Ãm(t,z,u) =
∫ d4k

(2π)4 e−iωt+ikzAm(k,u),
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2.1 AC conductivity

AC conductivity can be calculated using the linearised equation of motion for the gauge field.

A′′x +(
f ′

f
− c)A′x +

l4

4N2 f 2r2
+u

(ω2− k2 f )Ax− eφ 1
N2 f

h′xt = 0

Using gauge field equation of motion we get the frequency dependence of ac conductivity as shown
in Fig. 1 where the real part of the conductivity shows Drude peak.

Figure 1: Frequency and momentum dependence of ac conductivity at λ = 0.01 for µ =0.05

Now at zero momentum limit we calculate the ac conductivity flow at frequency ω = 0.9 using,
J̃x = iωσA(0)

x where,

J̃x =
−1
g2

√
−ge−φ Fux +

1
g2

e f f

√
−gA′th

x
t
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Figure 2: RG flow of AC conductivity with varying chemical potential µ=0.01(blue),0.05(red)and
0.1(dashed) at λ=0.05

At horizon ac conductivity is independent of GB term and is given as,

σA(u = 1) =
e−c

g2
r+
l

(2.5)
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2.2 Diffusion Constant

Diffusion constant can be calculated using[8],

1
σh(uc)

=
1

σh(1)
− k2

iω
D(uc)

σh(1)
(2.6)

(2.7)

σh :=
jz

fzt
= (−u2M′)

jz

f̃zt

D(uc) =

l2

2r+
N f (uc)

(2(1+a)−3auc)
[1−2λ (2−a)] (2.8)

Figure 3: Dependence of diffusion constant on Gauss-Bonnet corrections with varying chemical potential

3. Conclusions

We have studied the behavior of ac conductivity and diffusion constant using the soft-wall
model of holographic QCD. Introducing higher order gravity corrections (GB terms) makes the
metric and gauge field perturbations difficult to decouple.Using the membrane paradigm approach
we have calculated ac conductivity and diffusion coefficient at a cut-off. Diffusion constant shows
an explicit dependence on the GB term whereas ac conductivity is independent of the GB correc-
tion at the cut-off surface.We have also found that chemical potential plays a significant role to
determine the behavior of transport properties of the strongly coupled system.
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