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High Energy Physics has made use of artificial neural networks for some time. Recently, how-
ever, there has been considerable development outside the HEP community, particularly in deep
neural networks for the purposes of image recognition. We describe the deep-learning infras-
tructure at NERSC, and analyses built on top of this. These are capable of revealing meaningful
physical content by transforming the raw data from particle physics experiments into learned
high-level representations using deep convolutional neural networks (CNNs), including in unsu-
pervised modes where no input physics knowledge or training data is used. Here we describe in
detail a project for the Daya Bay Neutrino Experiment showing both unsupervised learning and
how supervised convolutional deep neural networks can provide an effective classification filter
with significantly better accuracy than other machine learning methods. These approaches have
significant applications for use in other experiments triggers, data quality monitoring or physics
analyses.
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1. Deep Learning At NERSC

Cori is the newest supercomputer at the National Energy Research Scientific Computing Cen-
ter (NERSC). Cori Phase 1 consists of 1,630 32-core Intel Haswell compute nodes. Cori Phase
2 will add around 9300 Intel Knights Landing (KNL) nodes. The system also provides a 29 PB
Lustre Filesystem and 1.5 PB NVRAM Burst Buffer. NERSC provides optimised versions of sev-
eral deep-learning frameworks. These include, Theano: for flexibility in method development;
Keras/Lasagne: Theano-based and high-level for ease-of-use; Caffe: including IntelCaffe with
performance highly optimised for KNL; Neon (used here): optimised for high performance and
parallel implementations; and TensorFlow: for ease-of-use and flexibility in addition to a large,
growing community. These frameworks are available within a deeplearning kernel on the NERSC
Jupyter service (ipython.nersc.gov) which allows for interactivity and scaling up to runs on Cori.

As well as the Daya Bay project featured here, other deep learning HEP projects are ongoing at
NERSC e.g., Ice Cube: improving astrophysical neutrino detection; ATLAS (HL-LHC) Tracking:
using recurrent NNs (such as LSTMs); ATLAS Calorimeter: CNNs on calo-cells for multi-jet
physics analyses; Probabilistic Programming: coupling inference to simulations for new-physics
detection; Cosmology images: CNNs to find clusters of galaxies and filaments in large simulations.

2. Use Case: Daya Bay

A Daya Bay Antineutrino Detector (AD) consists of 192 photomultiplier tubes (PMTs) ar-
ranged in a cylinder 8 PMTs high and with a 24 PMT circumference [1]. We use the value of the
charge deposit of each of the PMTs in the cylinder unwrapped into a 2D (8 “ring” x 24 “column”)
array of floats that is essentially a 2-D image. For the supervised part of this analysis, and for
visualizing the unsupervised results, we employ labels determined by the collaboration’s physics
analyses (see [1]). These label four types of events: “muon”, “flasher”, “Inverse Beta Decay (IBD)
prompt”, and “IBD delay”. A label of “other” is applied to all other events.

2.1 Methods: Convolutional Neural Networks and Autoencoders

A convolutional neural network (CNN) captures our intuition about local structure and trans-
lational invariance in images [2]. Typical CNNs have several convolutional and pooling layers
followed by fully connected layers. An autoencoder [3] is a neural network where the target out-
put is the input. It consists of an encoder: layers that transform the input into a feature vector at
the output of the middle layer (bottleneck or hidden layer), and a decoder: layers that attempt to
reconstruct this bottleneck back to the input. When the bottleneck layer output has dimensionality
smaller than that of the input (undercomplete), the network learns how to compress and reconstruct
examples. A convolutional autoencoder typically consists of convolutional and max-pooling layers
followed by fully-connected hidden layers (including a bottleneck) and then deconvolutional (and
unpooling) layers [4]. We used a RELU [2] activation for the convolutional layers in the autoen-
coder. The architecture of our networks are given in Table 1. As a qualitative assessment, we use
t-Distributed Stochastic Neighbor Embedding (t-SNE) [5], which maps n-dimensional data to 2
dimensions, ensuring points close together in the higher dimensional space are also near in 2-D.

Much more detail on the methods and results of this study can be found in [6].
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type filter size / number / stride
conv 3×3 / 71 / 1
pool 2×2 / 1 / 2
conv 2×2 / 88 / 1
pool 2×2 / 1 / 2

fc 1×5 / 26 / 1
fc 1×1 / 5 / 1

type filter size / number / stride / pad
conv 5×5 / 16 / 1 / 2x2
pool 2×2 / 1 / 2 / 0
conv 3×3 / 16 / 1 / 1×0
pool 2×2 / 1 / 2 / 0

fc 2×5 / 10 / 1 / 0
deconv 2×4 / 16 / 2 / 0
deconv 2×5 / 16 / 2 / 0
deconv 2×4 / 1 / 2 / 0

Table 1: Architecture (layers) of the supervised CNN (left) and convolutional autoencoder (right)

Method IBD prompt IBD delay Muon Flasher Other
k-NN 0.950 0.990 0.998 0.891 0.896
SVM 0.966 0.992 0.998 0.947 0.938
CNN 0.977 0.995 0.999 0.974 0.962

Table 2: Classifier accuracy for different methods and event types

Figure 1: t-SNE representation of features learned by the convolutional autoencoder. Insert shows
original and reconstructed image of one IBD delay event.

2.2 Results and Interpretation

Supervised Learning with CNN: The classification accuracies of k-nearest neighbor, support
vector machine, and the CNN architecture on the test set are summarized in Table 2. These results
suggest that there are patterns in the Daya Bay data that could be uncovered by the CNN. We were
able to achieve high accuracy on classification using only the spatial pattern. Our results also show
that deep neural networks were better than the other machine-learning techniques at classifying the
images (particularly on classes “IBD prompt” and “flasher”) and thus finding patterns in the data.

Unsupervised learning with Convolutional Autoencoder: The t-SNE visualization of the 10
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features learned by the network is shown in Figure 1 and obtains well defined clusters without us-
ing physics-based selections. There is a clearly separated cluster that is identified with the labeled
muons, and a separation between “IBD delay” and other events. We even achieve some separation
between “IBD prompt” and “other” backgrounds which is mainly achieved in the physics analysis
by incorporating additional timing information. In the reconstructed images, we can see the au-
toencoder was able to filter out input noise and reconstruct the important shape of different event
types: for example for “IBD delay” in the insert in Figure 1.

2.3 Conclusions

We apply unsupervised convolutional neural nets to raw data from the Daya Bay experiment
and have shown that the network can successfully learn patterns of physics relevance. Such un-
supervised techniques could be used for a variety of particle physics experiments to aid in trigger
decisions, in evaluating data quality, or to discover new instrument anomalies without having to
engineer features. We have also demonstrated that convolutional neural networks outperform other
supervised machine learning approaches running directly on raw particle physics data. These can
be used in fast triggers or in final analyses. We are now focussing on more challenging backgrounds
that dominate the current systematic uncertainties from the experiment as well as state-of-the-art
methods incorporating denoising or variational autoencoders and semi-supervised approaches.
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