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1. Introduction

With the continuous improvement of the data, most of the models for neutrino masses and
mixing have been discarded by experiment. However, the surviving ones still span a wide range
of possibilities ranging from a maximum of symmetry, as those with discrete non-abelian flavour
groups to the opposite extreme of Anarchy.

Models based on discrete flavour groups were motivated by the fact that the data seem to sug-
gest some special mixing patterns as good first approximations, like Tri-Bimaximal (TB) or Golden
Ratio (GR) or Bi-Maximal (BM) mixing, all having sin2

θ23 = 1/2, sin2
θ13 = 0 and differing by

the value of the solar angle sin2
θ12. The relatively large sinθ13, however, has disfavoured TB and

GR models because they in general predict too small departures from zero of θ13. Instead in most
models of BM the measured value of θ13 ∼ 9◦ is more natural. Here I focus on BM mixing [1]
which has the following structure:
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 . (1.1)

One can consider the possibility that BM is the mixing in the neutrino sector and that the rather large
corrective terms to θ12 and θ13 arise from the diagonalization of the charged lepton mass matrix,
as obtained in models based on the discrete symmetry S4 [1, 2]. This idea is in agreement with
the well-known empirical quark-lepton complementarity relation [3, 4], θ12 + θC ∼ π/4, where
θC is the Cabibbo angle or, to be less optimistic, with the “weak” complementarity relation θ12 +

O(θC)∼ π/4. In addition, the measured value of θ13 is itself of order θC: θ13 ∼ θC/
√

2.
In the following I discuss two examples of GUT models of BM: one based on SU(5) [2] that

realizes the program of imposing the BM structure in the neutrino sector and then correcting it
by terms arising from the diagonalization of charged lepton masses; the other based on SO(10)
with Type-II see-saw [5], where the origin of BM before diagonalization of charged leptons is left
unspecified.

2. A SUSY SU(5) model with S4 discrete symmetry

This is a variant of the SUSY SU(5) model in 4+1 dimensions [6, 7] with a flavour symmetry
S4⊗ Z3⊗U(1)R⊗U(1)FN [1, 2], where U(1)R implements the R-symmetry while U(1)FN is a
Froggatt-Nielsen (FN) symmetry that induces the hierarchies of fermion masses and mixings. The
particle assignments are displayed in Tab.1.

As a result of symmetries and field assignments to the ireducible representations of SU(5)×S4,
at LO the charged lepton masses are diagonal and exact BM is realized for neutrinos. Corrections
to diagonal charged leptons and to exact BM are induced by vertices of higher dimension in the
Lagrangian, suppressed by powers of a large scale Λ. We adopt the definitions:

vϕ`

Λ
∼

vχ

Λ
∼

vϕν

Λ
∼

vξ

Λ
∼ 〈θ〉

Λ
∼ 〈θ

′〉
Λ
∼ s≡ λC , (2.1)
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Field F T1 T2 T3 H5,H5 ϕν ξν ϕ` χ` θ θ ′ ϕ0
ν ξ 0

ν ψ0
` χ0

`

SU(5) 5̄ 10 10 10 5,5 1 1 1 1 1 1 1 1 1 1
S4 31 1 1 1 1 31 1 31 32 1 1 31 1 2 32

Z3 ω ω 1 ω2 ω2 1 1 ω ω 1 ω 1 1 ω ω

U(1)R 1 1 1 1 0 0 0 0 0 0 0 2 2 2 2
U(1)FN 0 2 1 0 0 0 0 0 0 -1 -1 0 0 0 0

br bu bu br bu br br br br br br br br br br

Table 1: Matter assignment of the model. The symbol br(bu) indicates that the corresponding fields live on
the brane (bulk).

where s =
1√

πRΛ
is the volume suppression factor, vφ are the vevs of the flavon fields listed in

Tab.1 and λC = sinθC. It turns out that this simple choice leads to a good description of masses and
mixings.

2.1 Charged lepton mass matrices and neutrinos

For the charged lepton masses we have the following mass matrix:

me ∼

 a11λ 5 a21λ 4 a31λ 2

a12λ 4 −cλ 3 ......

a13λ 4 cλ 3 a33λ

λ , (2.2)

where all matrix elements are multiplied by generic coefficients of O(1). The corresponding lepton
rotation is given by:

U` ∼

 1 u12λ u13λ

−u∗12λ 1 0
−u∗13λ −u∗12u∗13λ 2 1

 , (2.3)

(ui j again of O(1)) so that θ `
23 = 0 in this approximation.

The neutrino sector of the model is unchanged with respect to Ref. [2], so at LO the mass
matrix is obtained from the Weinberg operator and the mixing angles are easily derived:

sinθ13 =
1√
2
|u12−u13|λ sin2

θ12 =
1
2
− 1√

2
Re(u12 +u13)λ sin2

θ23 =
1
2
+O(λ 2) .

We see that, with λ ∼ λC, the model realizes the "weak" complementarity relation and the experi-
mental fact that sinθ13 is of the same order than the shift of sin2

θ12 from the BM value of 1/2, both
of order λC.

3. Bimaximal mixing in a SO(10) GUT model

In SO(10) the main added difficulty with respect to SU(5) is that on generation of fermion
belongs to the 16-dimensional representation, so that one cannot take advantage of the properties
of the SU(5)-singlet right-handed neutrinos. A possible strategy to separate charged fermions and
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neutrinos is to assume the dominance of type-II see-saw with respect to the more usual type-I see-
saw. In models of this type, the neutrino mass formula becomes Mν ∼ f vL , where vL is the vev
of the B−L = 2 triplet in the 126 Higgs field and f is the Yukawa coupling matrix of the 16 with
the same 126.

As one could decide to work in a basis where the matrix f is diagonalised by the TB matrix
or by BM matrix, the result of a fit performed in one basis should lead to the same χ2 than the fit
in other basis, so the χ2 cannot decide whether TB or BM is a better starting point. Then we need
another "variable" to compare whether the data prefer to start from TB or BM. One possibility is
to measure the amount of fine-tuning needed to fit a set of data; to this aim, a parameter dFT was
introduced in Ref. [5]:

dFT = ∑ |
pari

erri
| , (3.1)

where erri is the "error" of a given parameter pari defined as the shift from the best fit value that
changes the χ2 by one unit, with all other parameters fixed at their best fit values.

A study of the fine tuning parameter when the fit is repeated with the same data except for
sin2

θ13, which is moved from small to large, shows that the fine tuning increases (decreases) with
sinθ13 for TB (BM) but both BM and TB scenarios are almost equally compatible with the data for
similar values of the fine tuning parameter, especially for relatively large θ13.

4. Summary and Conclusion

I have discussed two examples of GUT models of BM, one based on SU(5)×S4 and one based on
SO(10). In the SU(5) model, the breaking of the S4 along the direction 〈ϕν〉 ∼ (0,−1,1) imposes
the BM structure in the neutrino sector (then corrected by the diagonalization of charged lepton
masses) and is useful to implement the weak form of complementarity. In the SO(10) model no
clear preference for BM or TB as good LO approximation of the data emerged.

I am very grateful to the organizers of the NOW2016 Workshop for inviting me to present
these results and for their kind hospitality.
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