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1. Perturbative 1 — 2 splittingin DPS

Whenever one has a final state in hadron-hadron collisions that cafithgosnto two subsets
A andB with a hard scale in each (e.§VW, Wjj, 4j), the possibility exists for that final state
to be produced in two separate hard collisions (double parton scatteribg®) rather than one
(the more well-studied case of single parton scattering, or SPS). On tHefameegrated cross
sections, DPS is a power correction to SPS, but it is enhanced atswitll respect to SPS (since
it involves two parton ladders rather than one), and can compete with $R8rfain processes
where the SPS mechanism is suppressed by small or multiple coupling colistgritg*W=).

Earliest studies of DPS were conducted using the lowest order Feyriagaams — essentially
the parton model framework [1, 2] (see also [3]). These studies inditdagcfollowing factorisation
structure for this contribution:
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Here,&ijﬁx is the partonic cross section for the production of final skafeom partond and
j, C is a symmetry factor that is 2 & = B and 1 otherwise, and tHe// (x;,xo,y) are the double
parton distributions (DPDs). These depend on ®ifactions and flavours (for the two partons),
as well as the quantity that measures the transverse separation between the two partons. This
formula would then be simply added to the usual SPS cross section whentougrtpe total cross
section for production ofAB.

In recent years, efforts have been made to upgrade this picture to @l iQcorporating
pQCD evolution effects. Some of these effects are similar as are encediite3PS — i.e. diagonal
parton emission from one of the parton legs. These can be straightfiiyviacorporated in a
similar way as is done for SPS. However, for DPS a new effect is poss#mseone goes backward
from the hard interaction, one can find that the DPS parton pair arasegfjperturbative ‘1— 2’
splitting (see figure 1(a)). The perturbative splitting mechanism yields tilsotion to the DPD
of the following form:

o 1 a fi(X1 + X X
F'(x1,%2,y) = : Zk(lz)'ﬁwij(l) (1.2)
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f is the usual single PDH, is a splitting function, ang = |y|. The 1/y? behaviour of this contri-
bution can be deduced already from dimensional counting grounds.
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Figurel: (a) Perturbative splitting contribution to a DPD. (b) Camition of double perturbative splitting
to DPS, also called “1v1” graph. (c) Single hard scatteriogtdbution.
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Figure2: (a) Contribution of single perturbative splitting to DP&aacalled “2v1” graph. (b) Graph with
a twist-two distribution for one proton and a twist-fourtdilsution for the other.

Consistently incorporating the effects of-1 2 splittings in the theory is not straightforward.
If one simply adds in a naive way the contribution of eq. (1.2) to the DPD, tiegiial overy in
eg. (1.1) becomes power divergent at snyallThis power divergence appears in ‘1v1l’ diagrams
with perturbative 1— 2 splittings in both protons, as in figure 1(b). Note that the graph in figure
1(b) can also be viewed as a higher-loop correction to the leading pd&p&cess, as in figure
1(c). This fact actually explains in an intuitive way the appearance ofdhvepdivergence in figure
1(b) — it comes from the 1v1 DPS diagram at snydleaking’ into the higher-power SPS region.
The divergence at smallis not present in reality (it arises from using DPS approximations in the
smally region where they are not valid) — it should be removed, and replacedheitippropriate
SPS expression, in an appropriate way to avoid double counting betidargl DPS.

A divergence also appears in thantegral for ‘2v1’ diagrams with a - 2 splitting in only one
proton — see figure 2(a). However, in this case we have only a logarithveigence, which one
can associate with the overlap of the DPS contribution with the same-poweltwaeist twist-four
contribution (see figure 2(b)).

In one previously-suggested approach for treating the 4 splitting effects [4], one makes a
separation of the DPD into a ‘perturbative splitting’ piece, and an ‘intrinsete where the parton
pair existed already at the nonperturbative scale. One includes the intensitinsic (‘2v2’)
and splitting® intrinsic (‘2v1’) contributions in DPS, but simply discards the splittingsplitting
(‘1vl’) contribution. This avoids double counting with the SPS. The troukith this approach
is in the definition of ‘splitting’ versus ‘intrinsic’ pieces — we do not know hsuch a separation
could be achieved in a field theoretic definition valid atyall

Another suggestion [5] involves regulating théntegral in eq. (1.1) using dimensional reg-
ularisation. This also avoids double counting with the SPS, but a drawbalcatisne loses the
concept of the DPD of an individual hadron — the appropriate oper&oDPS then involve both
hadrons at once.

A further past suggestion [6] is somewhat similar to [4], but involves inolgidhe 1v1 con-
tribution with an ad-hoc lower cut-off in thgintegral at values of order/Q (in [6] the cut-off is
actually imposed in the Fourier conjugate space, but the principle is the sdime)renders the
DPS contribution finite. However, there is now inevitably some double couhghgeen DPS and
SPS. There is in general a sizeable contribution to 1v1l DPS coming frormiieysregion where
the DPS picture is not valid. Finally, there is a strong (quadratic) deperdgfithe DPS cross
section on the unphysical cut-off — adjusting the cut-off to other reddenalues such as/® or
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1/(2Q) will significantly affect the cross section.

2. A consistent scheme

We now outline an alternative prescription which overcomes the drawldake previous
approaches. First, we regulate the DPS cross section through the ims#raocutoff function
®(u) in they integral of eq. (1.1):

/ d2y [(vy)]2F (x4, %,y) F¥ (52,5, Y) (2.1)

where®(u) — 0 for u — 0 and®(u) — 1 for u > 1. This cuts out contributions with/$ much
bigger than the cutoff scale from what we define as DPS, and regulates the power divergence.
An appropriate choice for this cutoff scaleus~ Q. Note that herd='l (x1,x2,y) is the full DPD
incorporating both parton pairs that had their origin in a perturbative 4 splitting, and those
that did not. This enables us to define DPDs via operator matrix elements, imttamurse to
perturbation theory.

Thus far, the prescription resembles closely that of [6], and suffers tlouble counting
between SPS and DPS. To fix this, we introduce a double counting subtréatio into the total
cross section formula including both SPS and DPS:

Otot = Opps— Osub+ Osps, (2.2)

The subtraction term is given by the DPS cross section with both DPDs eejplgca fixed order
1 — 2 splitting expression (at lowest order one simply has eq. (1.2) for eR&)) Bi.e. combining
the approximations used to compute 1v1 splitting graphs in the two approddbtesthat at any
order inas, the computation o5y, is technically much simpler than that o§ps

Let us demonstrate how this prescription works. At smatif order /Q, the dominant con-
tribution to the DPD comes from the (fixed order) perturbative splitting esgioa (eq. (1.2) at
lowest order) — thus one hasps ~ gsyp and oot =~ Ospshere as desired. The dependence on the
unphysical cut-offv cancels between the subtraction and DPS terms. At largel /Q, the domi-
nant contribution tasspscomes from the region of 1v1-type loops where the DPS approximations
are valid, such thatsps~ os,p and we havegi,; ~ dpps as appropriate. The construction just
explained is a special case of the general subtraction formalism didanssgapter 10 of [7], and
it works order by order in perturbation theory.

So far we skirted over the issue of double counting between the 2v1 diagrad the twist-
two vs. twist-four contributions. This can be fixed in an analogous way td#iéSPS double
counting, yielding the following for the total cross section:

Otot = OpPS— Osub (1vs1y+ OsPS— Osub (1vs2)+ Otw2 x twé - (2.3)

One can show that the su- Osup (1vs2)+ Otw2 x twa) iS Subleading in logarithms I¢@/A)
compared to the other terms (whéxés an infrared scale), so can be dropped at leading logarithmic
order.

Our formalism also appropriately resums DGLAP logarithms in the 1vl and BAgrais
in regimes where this is appropriate, and can be extended in a straightdomag to the case of
measured transverse momentum. We will not discuss these issues furtheefering the reader
to [8] for more detail.
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3. Double Parton Scattering Luminosities

Here we make quantitative estimates of the DPS part of the cross sectiorfiaroework. In
particular, we will present values for tlyantegral in eq. (2.1), which we shall refer to as the DPS
luminosity .. We remind the reader that this is only part of the cross section for theigtiod
of AB, and can have a strong dependence on the cut-off parametére will discuss in these
proceedings only the luminosity in the unpolarised case.

To make such estimates, one needs numerical values for theFDPR, xo,y, 1) (We take
the renormalisation scale for the two partons to be equal, and write thissedplicitly here).

At perturbatively smally < 1/A, the DPD at corresponding scgle~ 1/y should be given by

eg. (1.2) (at leading order ias, which we restrict ourselves to here). In the unpolarised case we
haveT_.jk(X) = B_j(x), whereR,_(x) is the leading-order splitting function appearing in single
PDF evolution, without the virtual terms proportionaldl — x). At nonperturbativey ~ 1//A, an
ansatz is required. We use the following form:

FU (%1, %2, Y, Hy) = Fsirjnl(xleZaYv Hy) + Fik (X0, %, Y, 1) (3.1)
-~ 1 P

Rt (X1, %2, Y, Hy) = me i fi(xa, py) 02, y) (1= X1 = 32)%(1=x1) *(1-%) 2 (3.2)

. 1 X as(Hy) « fi(X1+Xo, ty) X1
F” —_ 4h| S y ? y _>' 33

with
2% b y

_2* by N 3.4
W= Sy Y S v 24

Fspi is essentially the contribution to the DPD from perturbative splitting, whilstepresents
a contribution to the DPD from parton pairs already existing at the low gcalehe prescription
in eg. (3.4) is designed to freeze the scale in the PDFsardy approache$max, Whereymax is
taken of order IA. This avoids evaluations of the PDFs amgat very low scale, and is similar to
theb* prescription used in TMD phenomenology [9, 10]. Here we takg = 0.5GeV 1.

For the non-splitting piecEsig), we make the traditional ansatz of a product of single PDFs,
multiplied a smooth function with width ity of order of the transverse proton size. Here we
additionally multiply by a function of the; that doesn't affect the DPD at smajl but smoothly
cuts it off near the kinematic bound + x, = 1 — the function we use is that given in eq. (3.12)
of [11], with n set to 2. For theg-dependent function, we use a simplified version of the one used
in section 4.1 of [12], where we now take the widtlio bex-independent (corresponding to the
h(x1,%2) of [12] evaluated ak; = x, = 10~3), and we set eachwith g~ indices to be the same as
the one withg". Then we have:

hij = hi +h; (3.5)
with

hy=3.53GeV?  hy=hg=2.33GeV? (3.6)
J q q
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We include the same Gaussian dampingd to ensure the overalft dies off quickly to zero
aty values much larger than the transverse proton size.

The DPD is evolved from the initial sca}g to final scaleu using the appropriate renormal-
isation group equation for the DPDs — namely the homogeneous double D&dpddRion (given
in, for example, eq. (5.93) of [3]). In practice this is achieved using aifieddversion of the code
developed in [11].

For the cut-off, a theta function is used for simplicity — d&.vy) = ©(vy —byp). We setu in
the DPDs to 80 GeV (appropriate for the production &¥doson pair). In this investigation, we
take the collider energy to be 14 TeV, andseandx; to correspond to the central production of a
W boson, withx, andx, corresponding to the production o boson with rapidityy;:

X1 =X =57x103 x=57x103expY;) X =57x103exp—Y1) (3.7)

In figure 3, we plotZ'i¥(Y;) in the range—4 < Y; < 4 for the parton combinatiorigkl =
uluu -+ Guud (figure 3(a))i jkl = gggg (figure 3(b)), and jkl = uddu-+duud (figure 3(c)). The first
parton combination appears in e£Z production, the second is important in four-jet production,
and the last appearsWW™. We split the overall luminosity into a 1v1 contributiofsg ® Fspi),
2v1 contribution Espi®@ Fint + Fint ® Fspi) and 2v2 contributionfn ® Finy). We also vary by a factor
of 2 around a central value of 80 GeV in each contribution to show how Bt& éontribution alone
is affected by variation of this cutoff. The bands in each figure arergét using the extremal
values ofv, whilst the line denotes the luminosity with= 80 GeV.

We immediately notice in figures 3(a) and (b) that the 1v1 contribution is gignenach
larger than the 2v2 and 2v1 contributions, with enormuusriation in this former piece. This
shows that for these channels, and for these scalex aatlies, that one must include the SPS
corrections up to the order that includes figure 1(b) together with theasioin, so as to cancel
thev dependence and obtain a sensible prediction. By contrast, in figuréhd(ty1 contribution
is small compared to the 2v1 and 2v2, with smatlependence. This is because, as opposed to
andgg, there is no leading-order splitting directly giviug_(generation of zmd_pair requires at least
two steps, such as— u+g— u+d +d_). Here, there is less of a need to compute the SPS term up
to the order that contains the first nonzero DPS-type loop (in both amplindieanjugate), and
corresponding subtraction, to compensateutsgependence. This is fortunate, since in this case
one would require an SPS calculation two orders higher than that of figbjgtwo-step rather
than one-step splittings are required in both protons), which is well betyencurrent state of the
art.
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Figure 3: Double parton scattering luminositieg' ¥ (Y;) for the production of two systems with scale
p =80 GeV in a 14 TeV collider, one with central rapidity, and tteer with rapidityY;. Figure (a)
corresponds tojkl = utuu + uuuy, (b) corresponds tojkl = gggg, and (c) toi jkl = uddu + duud.
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