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Definition and Evolution of GTMDs
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Generalized transverse momentum distributions, one of the most fundamental hadronic quantities,
share the same problematic issue as the transverse momentum distributions: rapidity divergences.
In order to cancel them, a (square root of a) soft function should also be included in their def-
inition. By doing this, we manage to obtain their evolution kernel, which is universal for all
polarizations.
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Definition and Evolution of GTMDs Miguel G. Echevarria

In [1] we argue that the hadronic matrix elements called GTMDs, as currently formulated and
analyzed in the literature [2, 3, 4], are improperly defined. This results from two observations:
on one hand, these matrix elements lack proper evolution properties with respect to the renormal-
ization scale µ and the rapidity scale Q; and on the other, their operator product expansion into
generalized parton distributions breaks down even for large enough transverse momentum, con-
trary to what it should be.

When calculated perturbatively, as we show below for an unpolarized quark target, the existing
definition of GTMDs suffers from unwanted spurious rapidity divergences (RDs). Their existence
is not surprising: in fact, the situation is similar to the case of the by-now familiar TMDs [5,
6, 7, 8]. The fact that the GTMD correlator is off-diagonal in hadron momenta only makes the
QCD corrections more laborious to obtain, however the fundamental observation regarding the
appearance of spurious RDs remains the same.

At the operator level 1, the already existing definition of leading-twist quark GTMDs is given
by [3]

φ
[Γ],q
λλ ′ =

1
2
〈p′,λ ′| q̄(−z/2)Wn(−z/2)ΓW †

n (z/2)q(z/2) |p,λ 〉
∣∣∣
z+=0

, (1)

where λ , λ ′ are the nucleon helicities and the matrix Γ = {γ+,γ+γ5, iσ j+γ5} stands for an unpo-
larized, longitudinally polarized or transversely polarized quark, respectively. Gauge invariance
among regular gauges is satisfied by the inclusion of the collinear gauge link or Wilson line Wn.
This Wilson line can be past-pointing or future-pointing [4], but for definiteness we choose the one
consistent with DIS kinematics:

Wn;αβ (z) =

{
P exp

[
− ig

∫
∞

0
ds n̄·A(z+ sn̄)

]}
αβ

, (2)

where the gluon field A stands for collinear gluon field in the n direction. To ensure gauge in-
variance among singular and regular gauges, one needs to also introduce transverse gauge links at
light-cone infinities (z− = ∞) [9, 10, 11].

Motivated by the proper treatment of TMDs [5, 6, 7, 8], we arrive at the following result for
the properly defined quark GTMDs:

W [Γ],q
λλ ′ =

1
2

∫ dz−d2z⊥
(2π)3 e+i( 1

2 z−k̄+−z⊥·k̄⊥)φ
[Γ],q
λλ ′ (0,z

−,z⊥)S
1
2 (zT ) , (3)

where the soft function

S(zT ) =
Trc

Nc
〈0|S †

n

(
− z

2

)
Sn̄

(
− z

2

)
S †

n̄

( z
2

)
Sn

( z
2

)
|0〉
∣∣∣
z±=0

, (4)

with the following soft Wilson lines in DIS kinematics:

Sn;αβ (z) =

{
P exp

[
ig
∫ 0

−∞

ds n·A(z+ sn)

]}
αβ

, Sn̄;αβ (z) =

{
P exp

[
− ig

∫
∞

0
ds n̄·A(z+ sn̄)

]}
αβ

.

(5)

1A generic vector vµ is decomposed as vµ = v+ nµ

2 +v− n̄µ

2 +vµ

⊥ = (v+,v−,v⊥), where v+ ≡ n̄·v and v− ≡ n·v, with
the light-cone vectors defined by n = (1,0,0,1) and n̄ = (1,0,0,−1). We also use vT ≡ |v⊥|, so that v2

T = v2
⊥ =−v2

⊥ > 0.
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p′ = P + 1
2∆

k = k̄ − 1
2
∆ k′ = k̄ + 1

2
∆

p = P − 1
2∆

Figure 1: Kinematics for GTMDs in the symmetric frame.

This soft function has been shown to be universal [6, 7, 12, 13].

Couple of remarks are in order. First, the given new definition of quark GTMDs can be
straightforwardly extended to the case of gluon GTMDs. And second, the collinear contribution φ

is implicitly understood to be the pure collinear contribution, free from soft contamination [12, 14].

For TMDs (not GTMDs), the factor
√

S results from the splitting of the soft function contribu-
tion S among two TMD correlators, where S and the correlators appear in a factorization statement
for a given process. For GTMDs the situation is quite different, since there is not, so far, any
(factorized) process to rely on. Actually, it is a very important question if/how GTMDs can be re-
lated to experimental observables. The importance of properly defining quark and gluon GTMDs,
extracting their evolution kernels, motivating their lattice calculation and experimental measure-
ments, relies not only of them being fundamental objects of QCD, but also on their connection to
orbital angular momentum of partons inside hadrons [15, 16, 17, 18, 19, 20, 21, 22, 23].

1. NLO calculation: cancellation of rapidity divergences

For the perturbative calculation of the GTMDs for an unpolarized quark target, we use the δ -
regulator (see for instance [6]) to regularize rapidity and infrared (IR) divergences, and dimensional
regularization in MS-scheme (µ2→ µ2eγE/(4π)) for ultraviolet (UV) ones. All the results below
were obtained using Feynman gauge.

It is convenient to work in a symmetric frame, Fig. 1, with the average nucleon momentum P=
1
2(p′+ p), the momentum transfer ∆ = p′− p = k′−k and the average quark momentum k̄ = 1

2(k
′+

k). These momenta are parametrized as Pµ = (P+,P−,0⊥) and ∆µ = (−2ξ P+,2ξ P−,∆⊥), with
P− =

∆2
T+4M2

4(1−ξ 2)P+ and M being the nucleon mass. We work in a frame in which p and p′ have very

large plus components. The GTMDs W [Γ],q
λλ ′ depend on the kinematical variables (x,ξ , k̄2

T ,∆
2
T , k̄⊥ ·

∆⊥), with x = k̄+/P+ and ξ = −∆+/(2P+). They are also functions of the renormalization and
rapidity scales, as we discuss below, and our NLO results are valid in the DGLAP region, i.e.
|ξ |< x.

The GTMD W [γ+],q
λλ ′ can be decomposed as follows [3]

W [γ+],q
λλ ′ = Γ1 Fq

1,1 +Γ2 Fq
1,2 +Γ3 Fq

1,3 +Γ4 Fq
1,4 , (1.1)
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where the Fq
1,i functions are in general complex-valued and the Dirac helicity structures Γi are 2

Γ1 =
1

2M
ū(p′,λ ′)u(p,λ ) , Γ2 =

1
2M

k̄i
⊥

P+
ū(p′,λ ′)iσ i+u(p,λ ) ,

Γ3 =
1

2M
∆

i
⊥

P+
ū(p′,λ ′)iσ i+u(p,λ ) , Γ4 =

1
2M

k̄i
⊥∆

j
⊥

M2 ū(p′,λ ′)iσ i ju(p,λ ) . (1.2)

At tree level the soft function is unity, as well as the Wilson lines in the collinear correlator.
Thus we simply have

W [γ+],q
λλ ′

∣∣∣
LO

=
1

2P+
δ (1− x)δ

(2)(k̄⊥) ū(p′,λ ′)γ+u(p,λ )+O(αs) . (1.3)

Comparing this result with the general parametrization (1.1), we can identify the various F1,i dis-
tributions (using Gordon identities that appear, for instance, in Appendix A of [3]):

Fq
1,1 = (1−ξ

2)δ (1− x)δ
(2)(k̄⊥)+O(αs) ,

Fq
1,2 = O(αs) ,

Fq
1,3 =

1
2

δ (1− x)δ
(2)(k̄⊥)+O(αs) ,

Fq
1,4 = O(αs) . (1.4)

Let us now consider the NLO corrections, starting from the virtual ones. The soft function
has already been calculated with the δ -regulator in [6]. Using the LO result for the unsubtracted
matrix element φ of (3), which is basically δ (1− x), we can express the NLO contribution of the
soft function to the GTMD in (3). It is

W [γ+],q
λλ ′

∣∣∣
Svirtual

=

1
2

{
1

2P+
ū(p′,λ ′)γ+u(p,λ )δ (1− x)δ

(2)(k̄⊥)
αsCF

2π

[
− 2

ε2
UV

+
2

εUV
ln

δ 2

µ2 − ln2 δ 2

µ2 +
π2

2

]}
,

(1.5)

where the overall factor of 1/2 comes from the square root of S in (3). One can already notice
the term of mixed UV-RD divergences 1

εUV
lnδ . This term exemplifies one form through which the

problematic feature of RDs is manifested, namely their entanglement with UV divergences.
The virtual gluon contribution from the collinear matrix element φ is

W [γ+],q
λλ ′

∣∣∣
φ virtual

=
1

2P+
ū(p′,λ ′)γ+u(p,λ )δ (1− x)δ

(2)(k̄⊥)
αsCF

2π

[
2

εUV
ln

δ

P+
√

1−ξ 2
+

3
2εUV

− 3
2

ln
∆̃

µ2 −2ln
∆̃

µ2 ln
δ

P+
√

1−ξ 2
− 1

2
ln2 δ

P+(1+ξ )
− 1

2
ln2 δ

P+(1−ξ )
+

7
4
+

5
12

π
2+iπln

1−ξ

1+ξ

]
,

(1.6)

2Strictly speaking, the variables p, p′,P,λ ,λ ′ refer to partonic variables in all the results below. However we use
the same symbols as for hadronic variables.
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where the last result still includes the soft contamination (and thus it is known in the literature as
the naive contribution). It also clearly shows the presence of mixed divergences 1

εUV
lnδ .

To calculate all the virtual contributions to the GTMD we need to subtract a whole contribution
of the soft function, thus obtaining the pure collinear, and then add half of it as dictated by (3). We
thus end up subtracting (1.5) from (1.6). The result is

W [γ+],q
λλ ′

∣∣∣
virtual

=

1
2P+

ū(p′,λ ′)γ+u(p,λ )δ (1− x)δ
(2)(k̄⊥)

αsCF

2π

[
1

ε2
UV

+
1

εUV

(
3
2
+ ln

µ2

Q2(1−ξ 2)

)
− 3

2
ln

∆̃

µ2

− 1
2

ln2 ∆̃2

µ2Q2 + ln2 ∆̃

µ2 + ln
∆̃2

µ2Q2 ln(1−ξ
2)− 1

2
ln2(1+ξ )− 1

2
ln2(1−ξ )+

7
4
+

π2

6
+iπln

1−ξ

1+ξ

]
,

(1.7)

where Q2 =P+P−, and without loss of generality we have used the relation ∆̃≡Qδ with Q=P+ =

P− to simplify the logarithmic structure. It is clear that this result is free from mixed UV-RDs, as
anticipated. Similar conclusions apply to real-gluon emission diagrams: when the contributions
from the collinear and soft matrix elements are properly combined, RDs cancel completely.

To conclude, we emphasize that the inclusion of the soft function in the definition of GTMDs
completely cancels spurious rapidity divergences and makes them well-defined hadronic quantities,
with a proper evolution (discussed below) and all the properties that one would expect to have in
such objects.

2. Evolution of GTMDs

Given that GTMDs and TMDs are defined through the same bi-local operator, and the same
soft function, both have identical evolution. To start with, the anomalous dimension γ

j
W (for j =

q,g) controls the evolution in µ:

d
dlnµ

lnW̃ j(bT ; µ,Q2) = γ
j

W

(
αs(µ), ln

Q2(1−ξ 2)

µ2

)
, (2.1)

where W̃ q represents the Fourier transform of any of the 16 quark GTMDs that parametrize W [Γ],q
λλ ′

[3], with bT the conjugate variable of k̄T (see [4] for gluon case). γ
j

W has the same functional form
as the anomalous dimension of the TMDs (see e.g. [24] for the quark case and [8] for the gluon
case),

γ
j

W

(
αs(µ), ln

Q2(1−ξ 2)

µ2

)
=−Γ

j
cusp
(
αs(µ)

)
ln

Q2(1−ξ 2)

µ2 − γ
j(

αs(µ)
)
. (2.2)

and it is currently known up to third order in αs. On the other hand, the evolution in Q2 is given by

d
dlnQ2 lnW̃ j(bT ; µ,Q2) =−D j(bT ; µ) , (2.3)

5
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where the D j function is the same as for the TMDs, since it is obtained from the contribution of the
soft function, which is the same. See [24, 13, 8, 25] for the role of the D j term in the evolution of
TMDs.

The complete evolution from a given initial scales (µ0,Q2
0) to some final scales (µ,Q2) is

given by combining the evolution in µ and Q2:

W̃ j(bT ; µ,Q2) = R j(ξ ,bT ; µ,Q2,µ0,Q2
0)W̃ j(bT ; µ0,Q2

0) , (2.4)

where the evolution kernel R j is

R j(ξ ,bT ; µ,Q2,µ0,Q2
0) =

(
Q2

Q2
0

)−D j(bT ;µ0)

exp
[∫

µ

µ0

dµ̂

µ̂
γ

j
W

(
αs(µ̂), ln

Q2(1−ξ 2)

µ̂2

)]
. (2.5)

The D j term needs to be parametrized at large bT tail with some non-perturbative model, but it is
worth noticing that this model has to be the same as the one for TMDs, since the soft function that
enters the definitions of both TMDs and GTMDs is the same.

3. Conclusions

In [1] we have considered the current formulation of generalized transverse momentum depen-
dent distributions (GTMDs), and argued that they are ill-defined. This observation was supported
by a first-order calculation in perturbative QCD, which explicitly showed the appearance of the
anticipated spurious rapidity divergences, and their cancellation once the proper definition is con-
sidered, by the inclusion of a non-trivial soft factor. With the proper definition of the GTMDs at
hand, we managed to obtain their evolution kernel, which is universal and spin independent, and
whose non-perturbative contribution is exactly the same as the one that drives the evolution of
TMDs, since in both cases we have the same soft factor.
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