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We compute the quarkonium nuclear modification factor in a strongly coupled quark-gluon
plasma for quarkonia that are S-wave Coulombic bound states. We perform the analysis in a
non-relativistic effective field theory framework that is accurate at leading-order in the heavy-
quark density expansion and at next-to-leading order in the multipole expansion. We write and
solve the Lindblad equation for the heavy quark-antiquark density. Thermal mass shift, width and
the Lindblad equation depend on only two non-perturbative parameters: the heavy-quark momen-
tum diffusion coefficient and its dispersive counterpart. Finally, we provide numerical results for
the nuclear modification factors of the 1S and 2S bottomonium states.
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1. Introduction

It is thirty years that quarkonium suppression has been suggested as a hard probe for the
quark-gluon plasma formed at high energies in heavy-ion collisions [1]. On the experimental side,
quarkonium provides a potentially clean signal through dilepton decays [2]. On the theoretical
side, since quarkonium is made of heavy quarks, effective field theories and lattice QCD allow
to factorize high-energy from low-energy effects and, in principle, compute the suppression from
first principles [3, 4, 5]. However several effects enter the final observable: the hydrodynamical
evolution of the plasma, production, dissociation and regeneration of quarkonium in the different
medium conditions and many others [6].

The problem may be simplified if one considers the quarkonium ground state and particularly
the bottomonium 1S states; to a lesser extent the same applies to the charmonium ground state and
to the bottomonium 2S states. In this case one may argue that (a) the mass m of the heavy quark
is the largest scale of the problem, which qualifies the system as non-relativistic; (b) the inverse
Bohr radius, 1/a0, is the next relevant scale. For this scale is then larger than ΛQCD and any other
thermal scale, it is of order mαs. The hierarchy of energy scales that the system realizes is therefore

m� 1
a0
∼ mαs� any other scale . (1.1)

Among the other scales are the thermodynamical scales characterizing the quark-gluon plasma.
If the heavy quark-antiquark system satisfies (1.1), then it is mostly Coulombic. This means

that its interaction is described at leading order by a Coulomb potential. One may distinguish
between the Coulomb potential of a quark-antiquark pair in a color-singlet configuration, Vs(r) =
−CFαs/r, and in a color-octet configuration, Vo(r) = αs/(2Ncr). Nc = 3 is the number of colors
and CF = (N2

c −1)/(2Nc) = 4/3 is the Casimir of the fundamental representation. In a Coulombic
system the typical scale at which the strong coupling is computed in the potential is of the order
of 1/a0.

Bottomonium suppression has been measured at high energy by the LHC experiments [7, 8, 9].
Theoretically, besides color screening, which was the original suppression mechanism proposed
in [1], at least two further mechanisms of quarkonium suppression have been identified over the
years: gluodissociation [10, 11] and dissociation via parton scattering [12, 13]. Dissociation mech-
anisms have been studied in an effective field theory framework applied to Coulombic heavy quark-
antiquark states in a weakly-coupled plasma in [14, 15, 16, 17, 18, 19]. An extensive phenomeno-
logical analysis of bottomonium suppression can be found in [20, 21, 22].

In a weakly-coupled plasma one assumes the hierarchy πT �mD, where T is the temperature
and mD ∼ gT the Debye mass of the plasma. The theoretical advantage of this situation is that one
may use perturbation theory as a computational tool. It is uncertain, however, if a weakly-coupled
plasma is what describes best the medium formed in heavy-ion collisions at the LHC. A more
conservative approach consists in assuming that the plasma is strongly coupled, i.e., πT ∼ mD.
This is the situation that we will analyze in the following.

We will assume the hierarchy of scales

m� 1
a0
∼ mαs� πT ∼ mD� any other scale , (1.2)
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where the other scales include the binding energy and ΛQCD, whose relative hierarchy is not spec-
ified. In the situation (1.2), we will first compute the quarkonium thermal decay width and mass
shift in Sec. 2, then we will write and solve the heavy quark-antiquark evolution equations in Sec. 3
and finally compute the bottomonium nuclear modification factor in Sec. 4. This presentation is
based on [23, 24].

2. Quarkonium decay width and mass shift in a strongly-coupled plasma

Under the condition (1.2), the effective field theory suited to describe heavy quark-antiquark
pairs at an energy scale lower than mαs but larger than the thermal scales is potential non-relativistic
QCD (pNRQCD) [25, 26, 27]. According to our hierarchy of energy scales, pNRQCD may be
computed setting to zero the temperature and any other scale lower than the inverse Bohr radius.
The remaining scales provide non-perturbative contributions: contributions from thermal scales
have to be resummed to all orders because they are induced by a strongly-coupled plasma, but also
contributions scaling with the binding energy of the system may be non-perturbative if the binding
energy is of the order of or smaller than ΛQCD. The Lagrangian of pNRQCD at next-to-leading
order in the multipole expansion reads

LpNRQCD =
∫

d3r Tr
[
S† (i∂0−hs)S+O† (iD0−ho)O

]
+Tr

[
O†r ·gES+S†r ·gEO+

1
2
(O†r ·gEO+O†Or ·gE)

]
+Llight , (2.1)

where r is the distance between the heavy quark and the antiquark (the above Lagrangian is accurate
up to order r), S and O =

√
2OaT a stand for the heavy quark-antiquark fields in a color-singlet and

a color-octet configuration respectively, hs = p2/m +Vs is the color-singlet Hamiltonian, ho =

p2/m+Vo is the color-octet Hamiltonian, E is the chromoelectric field and g the strong coupling.
The term Llight stands for the QCD Lagrangian with light quarks only. The covariant derivative
acting on the octet field O in (2.1) can be eliminated by means of suitable field redefinitions:

O→ ΩOΩ† and E→ ΩEΩ†, where Ω = P exp
[
−ig

∫ t

−∞

dsA0(s,R)

]
and R is the center of mass

coordinate; P stands for path ordering. We make implicitly use of these field redefinitions in Sec. 3.

Figure 1: The leading color-singlet self-energy diagram in pNRQCD. The single line is a singlet heavy
quark-antiquark propagator, the double line an octet heavy quark-antiquark propagator, the curly line stands
for gluons and the vertices are chromoelectric dipole vertices.

At order r in the multipole expansion quark-antiquark pairs interact with the medium through
chromoelectric-dipole interactions. In (2.1) we have set equal to one the matching coefficients of
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these terms, since higher-order corrections are beyond our accuracy. The color-singlet self energy
shown in Fig. 1 reads

Σs(t) =
g2

2Nc

∫ t

t0
dt2 ri e−iho(t−t2) r j eihs(t−t2) 〈Ea,i(t,0)Ea, j(t2,0)〉 , (2.2)

where 〈· · · 〉 stands for the thermal average. The time t0 is the formation time of the quark-gluon
plasma, i.e., the initial time for the evolution of the heavy quark-antiquark pairs in the medium.
In the following, we will assume that t − t0 is larger than any other time scale of the system, so

that we can approximate
∫ t

t0
dt2 f (t2) ≈

∫
∞

0
ds f (t− s), and that the evolution of the temperature

is quasistatic, 1/T × dT/dt ∼ 1/t . binding energy, so that we may indeed compute the thermal
correlator of two chromoelectric fields as if the medium was in thermal equilibrium at a slowly
varying temperature T .

The leading contribution to the thermal decay width is provided by the imaginary part of the
color-singlet self energy. Since we assume that the thermodynamical scales are much larger than
the binding energy, we may set it equal to zero. This greatly simplifies the final expression, which
reads for 1S states

Γ =−2〈Im(−iΣs)〉= 3a2
0 κ . (2.3)

The heavy-quark momentum diffusion coefficient, κ , is defined as [28, 29]

κ =
g2

6Nc
Re
∫ +∞

−∞

ds〈TEa,i(s,0)Ea,i(0,0)〉= g2

6Nc

∫
∞

0
ds〈{Ea,i(s,0),Ea,i(0,0)}〉 , (2.4)

where T stands for time ordering. A recent lattice determination found for κ [30]:

1.8 .
κ

T 3 . 3.4 . (2.5)

This estimate has been obtained from a pure SU(3) plasma at a temperature of about 1.5 Tc. With
this value of κ , mb = 4.8 GeV and 1/a0 = 1.334 GeV that follows from the self-consistency equa-
tion 1/a0 = mbCFαs(1/a0)/2, we obtain for the ϒ(1S): 3.0GeV−2 T 3 . Γϒ(1S) . 5.7GeV−2 T 3.
This is a rather large thermal width for temperatures close or above the cross-over temperature to
the quark-gluon plasma, Tc, which is about 150 MeV [31, 32, 33].

The leading contribution to the quarkonium thermal mass shift is provided by the real part of
the color-singlet self energy. Setting again to zero terms of the order of the binding energy gives
for 1S states

δm = 〈Re(−iΣs)〉=
3
2

a2
0 γ , (2.6)

where

γ =
g2

6Nc
Im
∫ +∞

−∞

ds〈TEa,i(s,0)Ea,i(0,0)〉=−i
g2

6Nc

∫
∞

0
ds〈[Ea,i(s,0),Ea,i(0,0)]〉 . (2.7)

So far γ has not been computed on the lattice. The only estimate we have for γ is the perturbative
calculation done at leading order in [14]:

γ =−2ζ (3)CF

(
4
3

Nc +n f

)
α

2
s T 3 , (2.8)

where ζ is the Riemann zeta function and n f = 4 is the number of active flavours at the bottom-
mass scale. We should, however, consider that perturbation theory neither seems to converge in the
case of κ [34] nor agrees at leading order with the lattice result [35].
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3. Evolution equations in a strongly-coupled plasma

The yield of quarkonium nS states in ion-ion collisions normalized with respect to the yield
in pp collisions, as measured from dilepton decays, is called the quarkonium nuclear modification
factor, RAA(nS). It can be expressed as the density of (color singlet) nS states in ion-ion collisions
normalized with respect to the same quantity in pp collisions [2, 24]. The density of color-singlet
heavy quark-antiquark states, ρs, and color-octet ones, ρba

o = ρo δ ab/(N2
c − 1), may be expressed

in the close-time-path formalism as a singlet and octet propagator respectively that propagate from
the upper branch (labeled 1) to the lower branch (labeled 2) of the time path [36]

〈r′|ρs(t; t)|r〉 = Tr{ρ S†(t,r,R)S(t,r′,R)}= 〈S1(t,r′,R)S†
2(t,r,R)〉 , (3.1)

δ ab

N2
c −1

〈r′|ρo(t; t)|r〉 = Tr{ρ Oa†(t,r,R)Ob(t,r′,R)}= 〈Ob
1(t,r

′,R)Oa†
2 (t,r,R)〉 . (3.2)

We have assumed that the heavy quarks comove with the medium, so that we do not need to
consider the center of mass motion.

The evolution equations for the singlet and octet densities may be computed, therefore, by
considering diagrams similar to the one shown in Fig. 1, but now describing the evolution of the
〈S1S†

2〉 and 〈Ob
1Oa†

2 〉 propagators. Keeping only terms linear in the heavy-quark densities and re-
summing a certain class of self-energy contributions by means of a Schwinger–Dyson equation, we
obtain the evolution equations

dρs(t; t)
dt

= −i[hs,ρs(t; t)]−Σs(t)ρs(t; t)−ρs(t; t)Σ†
s (t)+Ξso(ρo, t) , (3.3)

dρo(t; t)
dt

= −i[ho,ρo(t; t)]−Σo(t)ρo(t; t)−ρo(t; t)Σ†
o(t)+Ξos(ρs, t)+Ξoo(ρo, t) . (3.4)

The explicit expressions of the functions Σo, Ξso, Ξos and Ξoo are similar to (2.2), i.e., they are time
integrals that depend on the energies of the states and on the chromoelectric field correlator [24].
The function Σo is the color-octet self energy; differently from the color-singlet self energy it
gets the contributions of two diagrams since chromoelectric fields allow for both octet-singlet and
octet-octet transitions. The functions Ξso, Ξos and Ξoo depend also on the densities of heavy quark-
antiquark states, hence, equations (3.3) and (3.4) show the coupled evolution of the singlet and
octet densities. Their interpretation is straightforward: the function Ξso accounts for the production
(or regeneration) of singlets through the decay of octets, while the functions Ξos and Ξoo account
for the production of octets through the decays of singlets and octets respectively. Also these two
octet production mechanisms can be traced back to the two different sets of chromoelectric-dipole
operators in the pNRQCD Lagrangian (2.1).

The evolution equations simplify considerably for the hierarchy of energy scales (1.2). In par-
ticular, if T is larger than the binding energy we may set to one the energy-dependent exponentials.
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This allows to write

Σs(t) =
r2

2
[κ(t)+ iγ(t)] , (3.5)

Σo(t) =
N2

c −2
2(N2

c −1)
r2

2
[κ(t)+ iγ(t)] , (3.6)

Ξso(ρo, t) =
1

N2
c −1

ri
ρo ri

κ(t) , (3.7)

Ξos(ρs, t) = ri
ρs ri

κ(t) , (3.8)

Ξoo(ρo, t) =
N2

c −4
2(N2

c −1)
ri

ρo ri
κ(t) , (3.9)

where κ is the heavy-quark momentum diffusion coefficient defined in (2.4) and γ has been defined
in (2.7). They depend on time through the temperature.

With the above functions, we can rewrite the evolution equations (3.3) and (3.4) in the Lindblad
form [37, 38]:

dρ

dt
=−i[H,ρ]+∑

n

(
Cn ρ C†

n−
1
2
{C†

nCn,ρ}
)
, (3.10)

where ρ is the matrix

ρ =

(
ρs 0
0 ρo

)
, (3.11)

H is the Hermitian operator

H =

(
hs 0
0 ho

)
+

r2

2
γ(t)

(
1 0

0 N2
c−2

2(N2
c−1)

)
, (3.12)

and the operators Cn are the six collapse operators C0
i and C1

i given by

C0
i =

√
κ(t)

N2
c −1

ri

(
0 1√

N2
c −1 0

)
, (3.13)

C1
i =

√
(N2

c −4)κ(t)
2(N2

c −1)
ri

(
0 0
0 1

)
. (3.14)

The Lindblad equation has been studied in relation with quarkonium in a quark-gluon plasma also
in [39].

4. Bottomonium suppression

We assume that the temperature of the quark-gluon plasma evolves slowly according to [40]

T = T0

( t0
t

)v2
s
, (4.1)

where T0 is the initial temperature and vs is the velocity of sound in the medium. In a deconfined
plasma at a very high temperature v2

s = 1/3. As values of T0 and t0 for central collisions at the LHC
we take T0 = 475 MeV and t0 = 0.6 fm [41].

5
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We study collisions with different centralities. Since we assume the plasma to be homogeneous
and isotropic, the only effect that a difference in centrality produces is a change in the initial value
of the energy density and hence in T0. Values of T0 for different centralities and mean impact
parameters are listed in Tab. 1.

centrality (%) 〈b〉 (fm) T0 (MeV)
0-10 3.4 471
10-20 6.0 461
20-30 7.8 449
30-50 9.9 425

50-100 13.6 304

Table 1: Initial temperature of the fireball, T0, for different centrality bins and mean impact parameters,
〈b〉 [42]; 0-10% centrality means that from all the collisions we select the most central 10%.

According to (4.1) and Tab. 1, if the evolution starts at t0 = 0.6 fm, the fireball has cooled
down to about 250 MeV at about 4 fm for the most central collisions and at about 1.1 fm for the
most peripheral ones. A temperature of about 250 MeV is the smallest temperature, still larger than
the cross-over temperature to the quark-gluon plasma, Tc, where we expect the hierarchy (1.2) to
be safely realized for the bottomonium lowest states.

30-50% centrality 50-100% centrality
RAA(1S) RAA(2S)

RAA(1S) RAA(1S) RAA(2S)
RAA(1S)

0.23+0.10
−0.07 0.24±0.09 0.80±0.05 0.59±0.10

Table 2: Results for RAA(1S) and RAA(2S) for κ/T 3 in the lattice range, γ = 0 and δ = 1 in the bottomonium
case.

In Tab. 2 we show the bottomonium nuclear modification factors for κ in the lattice range
(2.5), γ = 0, δ = 1 and for centralities 30-50% and 50-100%. The number δ/αs(mb) provides the
initial fraction of octets with respect to singlets. We correct for feed-down effects using the method
of [22]. A scan of the nuclear modification factor for different values of γ and δ shows that the
results are sensitive to γ and seem to prefer a small value, whereas they are rather insensitive to δ .

The results can be compared with the experimental observations of [7]. The CMS collabo-
ration measures for 30-40% centrality, RAA(1S) = 0.681± 0.069± 0.085± 0.093 and RAA(2S)/
RAA(1S) = 0.344± 0.138± 0.027± 0.041, for 40-50% centrality, RAA(1S) = 0.590± 0.096±
0.086±0.08 and RAA(2S)/ RAA(1S) = 0.420±0.220±0.048±0.050, and finally for 50-100% cen-
trality, RAA(1S) = 1.005±0.121±0.176±0.137 and RAA(2S)/RAA(1S) = 0.304±0.154±0.040±
0.037.

5. Conclusions

In this work, we have considered quarkonium and more specifically bottomonium suppression
in a strongly-coupled plasma. Relatively little is known from first principles about this case, al-
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though it is a case of particular interest at the LHC, for the temperature may not be much larger
than mD.

We have computed the leading thermal decay width (2.3) and mass shift (2.6) induced by the
plasma on 1S-state quarkonia. They depend on only two non-perturbative parameters, respectively
the heavy-quark momentum diffusion coefficient κ and the parameter γ .

Interestingly, for a strongly-coupled plasma satisfying the hierarchy (1.2) the leading-order
evolution equations for the singlet and octet densities reduce to a Lindblad equation that depends
on the same two parameters κ and γ . We have computed the time evolution of the heavy quark-
antiquark densities and the nuclear modification factors RAA(1S) and RAA(2S) for bottomonium
(see Tab. 2) in the framework of Bjorken’s evolution equation of the plasma.

The output depends crucially on the initial conditions and on the parameters κ and γ . While
κ has at least been computed in quenched lattice QCD for temperatures close to Tc, γ has not.
The determination of γ remains therefore one of the main uncertainties in the determination of the
modification factor RAA.
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