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1. Introduction

The realisation that a large class of Feynman integrals can be written in terms of so-called
multiple polylogarithms (MPLs) has led to major advances in precision calculations in high-energy
physics. A deeper understanding of the algebraic structure of MPLs has contributed to the devel-
opment of new efficient techniques to evaluate Feynman integrals and to handle the complicated
analytic expressions inherent to these computations, see e.g. [1, 2]. In this context, a very impor-
tant tool is the coaction [3, 4], a mathematical operation that exposes properties of MPLs through
a decomposition into simpler functions. Starting from two loops, there are Feynman integrals that
cannot be written in terms of MPLs only, and extending the coaction to more general classes of
functions is a pressing question, see e.g. [5]. Here, we discuss the coaction introduced in [6] and its
application to one-loop Feynman integrals where it has a simple diagrammatic representation [7].
We illustrate how it constrains the algebraic structure of these functions by discussing its implica-
tions in the study of their discontinuities and the differential equations they admit.

2. A coaction on integrals

In [6], a new formula for the coaction on a large class of integrals was proposed which we
briefly review here. Let @ be a closed differential form and 7y a contour such that the integral of
® over Yy converges. For simplicity, we also assume that @ vanishes on the boundary of y. We

A(/ya)):;/ywi@) %w. 2.1)

The w; are a basis of master integrands and the ¥; a dual basis of master contours, in the sense that

P, < /Y w,-) =5, 2.2)

where Py is a projector onto the subspace of ‘semi-simple’ objects x on which the coaction acts

conjecture that

trivially, A(x) = x® 1. For the purpose of these proceeding, it is sufficient to consider Py as setting
to zero all polylogarithmic functions, except where they evaluate to 7 or even powers of 7. The
second integral on the right-hand-side of eq. (2.1) is defined mod i7.

The procedure to construct a coaction based on eq. (2.1) has three main steps:

1. construct a basis of master integrands ; ;
2. construct a basis of master contours I7 ;
3. rotate and normalise the basis I'; to find a new basis ¥; dual to @; in the sense of eq. (2.2).

In the last step we can modify the @; basis instead of the I';, the goal being to construct dual bases.

The coaction of eq. (2.1) interacts with discontinuities and differential equations in a very
simple way. Loosely speaking, the computation of a discontinuity can be seen as the modification
of the integration contour y without modifying the integrand; conversely, differentiation modifies
the integrand @ but not the integration contour. We thus conclude that discontinuities only act on
the first entry of the coaction, and derivatives on the second, which can be written as:

ADisc = (Disc ®id)A and dDisc = (id® Jd)A, (2.3)

where id denotes the identity operator.
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2.1 Example: the coaction on multiple polylogarithms

As a first example of the use of eq. (2.1), we follow the steps above to reproduce the well-
known coaction on multiple polylogarithms (MPLs) for generic values of the arguments [3, 4].
MPLs are defined iteratively as

G(Zz;z):/oZ d G(az,. /a)a, (2.4)

t—ai

and it is easy to see that the set of master integrands associated with the integral G(d;z) is @;
with b C d (we denote the empty subset as 0 and set @ = dt). The obvious candidates for master
contours are the paths from 0 to z that encircle a subset b of the poles in @, which we denote I';,
with I the straight line from 0 to z. The bases @; and I'; are not dual to each other in the sense of
€q. (2.2), but this can be fixed by normalising the contours as ¥; = ¢;17, with ¢; = 7 'ifb=0and

cr = (27Ti)_‘z| otherwise. Defining G;(d;z) = [; @z, we then obtain

G(d;z) Z/ ; ® ar—l@G(az + Z G(b:2) ) ®Gy(d:z), (2.5)
0#bCa

which reproduces the expected coaction on MPLs [3, 4]. We have separated the term corresponding
to b = 0 for later reference.

3. Coaction of one-loop (cut) Feynman integrals

We conjecture that the coaction in eq. (2.1) applies to a large class of integrals. Here, we
will show how it applies to one-loop Feynman integrals in dimensional regularisation and explore
some of the consequences [6, 7, 8]. This is a very convenient choice for testing the applicability of
eq. (2.1) beyond the case of MPLs. Indeed, since the coefficients of the Laurent expansion in the
dimensional regulator € of any one-loop integral are conjectured to be MPLs, we can check that
the prediction of eq. (2.1) for the coaction on one-loop integrals prior to expansion reproduces the
combinatorics of the well established coaction on MPLs after expansion.

A basis of master integrands We consider one-loop Feynman integrals with an arbitrary con-
figuration of internal and external masses. It is well known that integrals with different powers
of the propagators satisfy integration-by-parts (IBP) relations [9], and integrals in different space-
time dimensions satisfy dimension-shift identities [10]. Tensor integrals can be reduced through
Passarino-Veltman reduction [11]. Taking all these relations into account, we can choose a basis of
master integrands labeled by the corresponding Feynman graph G as!

8‘/%5(; DG gl 71 1
(DG— k H —k qj)z_m§

~Dal2 3.1
where Eg denotes the set of internal edges of G (the propagators) and we change the dimensions

according to the number of propagators, Dg = 2[|E|/2] — 2€. The ¢; are linear combinations of

IStrictly speaking, this is an over complete basis as for sufficiently degenerate kinematic configurations there are
new IBP relations, such as the one relating the one-mass triangle to the one-mass bubble. This is not an issue for us
because we work in dimensional regularisation where these limits are smooth.
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the external momenta p;, and the dependence of @wg on the kinematic invariants p; - p; and m? is
implicit. 4%, is a normalisation factor that guarantees that the associated Feynman integral has
‘unit leading singularity’ [12] and it can be computed by evaluating the maximal cut at € = 0. In
direct analogy with the case of MPLs discussed above, the basis of master integrands relevant to
the study of the Feynman integral associated with the graph G is given by all @g,., where C is a
subset of Eg and G is the graph obtained by pinching all propagators that are not in C.

This choice of master integrands is motivated by the fact that the corresponding Feynman
integrals

eYESC/I@,G / ‘EG|71 1 ® (3 2)
— G .

Jo = — dPek —— =
inPa/2 ]IJ) (k—qj)z—m§ Iy

have very nice analytic properties. In particular, they satisfy differential equations in so-called

canonical form [2] and the coefficients of their Laurent expansion in € have uniform weight.

A basis of master contours Any two integration contours are equivalent if one can be smoothly
deformed into the other, without crossing any singularities of the integrand. To find a basis of
master contours, we thus start by studying the singularities of the integrand, the so-called Landau
singularities [13]. For one-loop integrals, there are two kinds of singularities: the singularities of
the first kind, corresponding to a set of propagators being put on-shell, and the singularities of
the second kind, which also pinch the contour at infinity. Candidates for master contours are thus
the contours I, ; that encircle the poles of propagators i; through i,, and the contours I'.;, ;,
which also encircle the pole at infinity. The question of whether all these contours are indepen-
dent can be answered in the context of homology theory. This was addressed in the 60s [14] for
integer space-time dimensions, and we have checked that the conclusions still hold in dimensional
regularisation [8]. The so-called Decomposition Theorem establishes that the contours satisfy the
following relations:

|C| odd: e =—2Ic— Y, Teet..., (3.3)
e€EG\C
|C| even: Foc=— Y Tce— Y, Teept..-, (3.4)
e€EG\C e,fEEG\C

where C is a subset of the set of propagators Eg of a graph G, and we have omitted writing contours
that lead to contributions that vanish mod iw. Due to egs. (3.3) and (3.4), we may exclude the
contours that encircle the pole at infinity and choose the elements of our basis of master contours
to be the I';, ; , labeled by the subset of propagator poles they encircle.

This choice of master contours is directly related to the notion of cut Feynman integral. Indeed,
we must evaluate integrals of the form

CgcJ(;E/ g, (35)
T'c

which correspond to setting the propagators in C on-shell. In the one-loop case, these integrals have
been extensively discussed in [8]. We note that the relations in egs. (3.3) and (3.4) directly translate
to new relations between cut integrals that do not follow from IBP or dimension-shift identities.



The diagrammatic coaction and the algebraic structure of cut Feynman integrals Samuel Abreu

A dual basis of master contours Having identified a basis of master integrands and master
contours, we must now make them dual to each other. For |C| even, we have

P </r (0G> = Oc.E; = Yc=T¢, (3.6)
C

which is consistent with the fact that the normalisation factor .4z, in eq. (3.1) is the maximal cut
evaluated at € = 0. For |C| odd, the relation with the dual basis is more complicated:

' 1
Py o, —
KX </Fc G+2

The reason for this more complicated relation can be understood by writing one-loop integrals as

1
Z / 0)(;) = 8C-,EG = Yc = I'c+ 5 Z I'ce. (37)

ecEg\Cc”Tce e€EG\C

integrals over a compact quadric in the complex projective space CPP*!. Then it becomes clear
that members of our basis of master integrands taken at € = 0 have a simple pole at infinity for
|Eg| odd, which is absent in the case of |Eg| even. If we had allowed ourselves to pick master
contours that encircle infinity for |C| odd, as would be natural since this extra pole is present, then
the relation with the dual basis would have been simpler. Indeed, using eq. (3.3) we have

1 1
Y=Tc+= ) rcg:—irchr..., IC| odd, (3.8)
EEE(;\C

where the dots lead to contributions that vanish mod irx.

3.1 Diagrammatic coaction for one-loop Feynman integrals

Having constructed dual bases of master integrands and master contours, we can now use
eq. (2.1) to write the coaction on one-loop Feynman integrals:

AUg)= ). WG, ® | ©g. (3.9)
0£CCEG” Lo Yo

Because master contours and master integrals can be labeled by subsets of propagators of the
Feynman graph G, and given eq. (3.5), this coaction has a very simple diagrammatic formulation:

AUg) =Y, JGC®<‘€CJG+ac Y CKCeJ(;), (3.10)
0#CCEg e€EG\C

where ac = 1/2 for |C| odd and 0 otherwise. We note that all our discussion in this section extends
trivially to the coaction on cut one-loop Feynman integrals, but we will not discuss this further in
these proceedings.

4. Checks and applications of the diagrammatic coaction

The diagrammatic coaction of eq. (3.9), or equivalently eq. (3.10), is based on the conjecture
in eq. (2.1), and we must show that it gives consistent results. We now briefly review the several
checks discussed in [7].
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The first nontrivial consistency check of eq. (3.9) is to verify that coaction components of the
form 1® Jg are correctly reproduced. Indeed, the empty set is excluded from the sum in eq. (3.9)
because 'y is not a master contour, and we thus only have cut integrals appearing in the second
entry of the tensor in the coaction. This is unlike what happened for MPLs where this term appears
explicitly, see eq. (2.5). The only way for the coaction to be consistent is that there is a linear
combination of cut integrals that reproduces the uncut integral. This relation can be obtained by
setting C = 0 in eq. (3.4), and then computing the integral over I'.,. We then find the remarkable
relation valid for any one-loop integral [8]:

Y Go+ Y blo=-elc modin. 4.1
ecEg e,feEg
e<f

This relation guarantees that terms of the form 1 ® Js are correctly reproduced by eq. (3.9). The
coaction component J; ® 1 can also be checked to be correctly reproduced by eq. (3.9) for any
one-loop integral.

Aside from consistency checks, we have also verified eq. (3.9) in a large number of examples.
For these, it is important to stress that the coaction is valid in dimensional regularisation and prior
to expansion in €. This means that although we formulated it for a completely generic mass config-
uration, it is still valid in any degenerate kinematic configuration: one simply sets to zero scaleless
Feynman integrals and vanishing cut integrals. As an example, consider a three-point function with
massless propagators. The pinches include scaleless tadpoles which are set to zero, and we thus
obtain from eq. (3.10):

A [ —Qﬂ = Q@—%—F JQ;@—Q}r -ZQ:@—@E‘F_QE@) —QE (4.2)

To verify that (4.2) is correct, each integral is expanded in €. Each term in the expansion is a
combination of MPLs, of increasing weight as one goes to higher orders in €. At each order in &,
we check that the coaction of MPLs acting on both sides of eq. (4.2) gives the same result. Through
this approach, we reduce the check of our conjecture to a check that relies on the coaction of
MPLs, which was first established from completely different arguments on a rigorous mathematics
footing [3, 4]. For this example, the explicit check was done up to weight 4. Note that while
the left-hand side of eq. (4.2) is finite, the right-hand side has poles associated with the bubble
integrals. The contribution of these poles cancels because of eq. (4.1). The cancellation of the
poles appearing from bubble or tadpole integrals due to eq. (4.1) is another general feature of the
diagrammatic coaction.

4.1 Applications of the diagrammatic coaction

We now briefly discuss how the diagrammatic coaction encodes the algebraic structure of one-
loop integrals, and how it can be used to obtain important information on these functions in a simple
way. In particular, we would like to highlight the fact that it constrains the algebraic structure of a
complicated integral through relations to simpler ones, obtained from its pinches and cuts.

4.1.1 Discontinuities

All known results on discontinuities of Feynman integrals (see [15] for some examples) are
trivially reproduced by the diagrammatic coaction, because the first entries of the coaction tensors
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are Feynman integrals, and discontinuity operators only act on the first entry of the coaction, see
eq. (2.3). As an example, consider the discontinuity on the channel sj, = (¢ — q2)2 of the three
point function in eq. (4.2), with ¢g; the momentum of propagator i and all g; moving clockwise
around the diagram. To compute this discontinuity, one simply needs to know how to compute the
discontinuity of the bubble integral appearing in the first term on the right-hand side of eq. (4.2),
which is trivial as it is a single scale integral whose discontinuity is just 27i. We directly recover
the expected result that the discontinuity function is the two-propagator cut (we write ~ because
the precise relation depends on the definition of Disc):

2 %
Discy,, ( 5 > ~ (2mi) -ﬁg : (4.3)
1 B

The relation between coaction entries and discontinuities, and in particular the reason why it is
sufficient to consider the term with a bubble integral in the first entry for this example, is explained
in more detail in [7]. The diagrammatic coaction also allows us to present a sharper version of the
so-called ‘first-entry-condition’: In the coaction of a (cut) Feynman integral, the first entries are
themselves Feynman integrals, with a subset of propagators but the same set of cut propagators.

4.1.2 Differential equations

Another new insight given by the diagrammatic coaction on the algebraic structure of one-loop
cut Feynman integrals relates to the differential equations they satisfy. The fact that differential op-
erators only act on the last entry of the coaction, see eq. (2.3), implies that the differential equation
of any one-loop integral is completely determined from its cuts. In fact, it is determined by a very
small subset of all cuts, and only at very specific orders in € [7]. More precisely, the coefficients of
the differential equation are just the derivatives of the weight-one terms in the Laurent expansion
of any of the cuts of the integral under consideration. For a finite one-loop integral, these are:
the maximal cut at order €!, the next-to-maximal cut at order €' (¢°) for an even (odd) number
of propagators, and the next-to-next-to-maximal cut at order €°. These cuts have been computed
for a completely generic one-loop integral, and are easily written in terms of Cayley and Gram
determinants (see eqs. (9.11) and (9.12) in [7]). Using the diagrammatic coaction, together with
the explicit results of these cuts, we can thus write down the differential equation for any one-loop
integral, without needing IBP relations as required in more standard approaches. For instance, the
differential equation for a five-point function in our basis, i.e. in 6 — 2¢€ dimensions and normalised
to have unit leading singularity, and with any mass configuration is given by

IR SR a v e KCe )
(LS

where i, j, k and [ run over distinct edges of the graph. Since the knowledge of the differential equa-

=
=

4.4)

tion completely determines the symbol of a function, these cuts iteratively construct the symbol of
any one-loop integral (an alternative algorithm was recently proposed in [16]). This is another ex-
ample of how the coaction allows us to gain information on the algebraic structure of complicated
functions from that of simpler ones.
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To make the discussion more concrete, we give the explicit results for the relevant cuts of the
fully massless pentagon. We will use thin lines to denote massless propagators and external legs,
take all external momenta as incoming and the propagator momenta ¢;, with i € {1,...,5}, moving
clockwise around the diagram. The integral is then a function of the five invariants s; = (¢; — q;+2)2,
with the indices of the ¢; understood cyclically. The order &' term of the maximal cut is

—In <—16Gram5> : (4.5)

51528538485
where Grams = det(q; - g;) for 1 <i,j < 4 is the usual Gram determinant associated with this
function. For the next-to-maximal cuts, we first define the auxiliary functions

€

v(X1,%2,X3,X4,X5) = X1X5 + X1 X2 +X3X4 — X2X3 — X4X5 + 1/ 16 Grams,

(4.6)
V(X1,X2,X3,X4,X5) = X[X5 +X1X2 + X3X4 — XpX3 — XaX5 — / 16 Grams .
Then, the order €° term of the cut integral where all propagators but i are cut is given by:
=X :ln<\7(si1,Si,Si+1,Si+2,Si+3)) . @.7)
N e V(Sio1,8iySi41,8i4+2,5i+3)
Finally, in the massless case all triple cuts vanish,
=0 Vi, j,ke{l,2,3,4,5}. (4.8)

k

Using eqs. (4.5), (4.7) and (4.8) in the generic expression (4.4), we obtain the differential equation
for the massless pentagon, valid to all orders in €. Noting that in the massless case all triangles
in (4.4) are reducible to bubbles, we reproduce the expected differential equation [17]. As another
check, we note that the letters in eqgs. (4.5) and (4.7) are a subset of those appearing in two-loop
five-point massless integrals [18].

5. Conclusion

We have presented a new formula for a coaction on a large class of integrals. When applied
to one-loop Feynman integrals, it has a very simple diagrammatic interpretation in terms of cuts
and pinches of the original integrals. The consistency of the diagrammatic coaction is checked by
showing that it reproduces the combinatorics of the coaction on MPLs acting on the coefficients
of the Laurent expansion of one-loop integrals. We then discussed how the diagrammatic coaction
encodes important information on the algebraic structure of one-loop integrals. In particular, we
argued that it reproduces known results on the discontinuities of these functions and showed how it
completely determines the differential equation they satisfy. The application of the general formula
for the coaction to other classes of functions, including for Feynman integrals beyond one-loop that
do not evaluate to MPLs, is ongoing work.
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