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Iterations of elliptic integrals Ettore Remiddi

1. Introduction

We consider the equal mass two-loop sunrise amplitude in d-continuous dimensions, see

p

m

m

m

Figure 1: The two-loop equal mass sunrise graph.

Fig. 1, depending on the external momentum p. It is known that the amplitude develops an imagi-
nary part in p2 = p2

0−~p2 = u for timelike p and u≥ 9m2 or W ≥ 3m, with W =
√

u. That imaginary
part is equal, up to an overall constant irrelevant here, to the 3-body phase space at energy W , which
in d dimension, again up to an overall constant, reads

Φ(d,W ) =
∫ (W−m)2

4m2

db√
R4(u,b)

(
R4(u,b)

ub

) d−2
2

, (1.1)

where R4(b,u) is the fourth-order polynomial in b

R4(b,u) = b(b−4m2)((W −m)2−b)((W +m)2−b) . (1.2)

At d = 2 one finds (anticipating the notation which will be used later)

Φ(2,W ) = I0(u) =
∫ (W−m)2

4m2

db√
R4(u,b)

=
2√

(
√

u+3m)(
√

u−m)3
K
(
(
√

u−3m)(
√

u+m)3

(
√

u+3m)(
√

u−m)3

)
, (1.3)

where K(x) is the complete elliptic integral of the first kind. In the following, we will find also
the related elliptic integral, also real for W ≥ 3m, which corresponds to the second period of the
associated elliptic curve

J0(u) =
∫ 4m2

0

db√
−R4(u,b)

=
2√

(
√

u+3m)(
√

u−m)3
K
(

1− (
√

u−3m)(
√

u+m)3

(
√

u+3m)(
√

u−m)3

)
. (1.4)

By expanding Φ(d,W ) in d around d = 2, one obtains the family of integrals∫ (W−m)2

4m2

db√
R4(u,b)

×
{

lnb, ln(b−4m2), lnb ln(b−4m2), ...

}
.

As an almost obvious generalization, we introduce the functions

EG(n)(k,u) =
∫ b j

bi

db bk√
R4(u,b)

g(n)(u,b) , (1.5)
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where k ≥ 0 is a non-negative integer, (bi,b j) are any two of the four roots of
√

R4(u,b){
0, 4m2, (W −m)2, (W +m)2 } ,

and finally g(n)(u,b) is a polylogarithm in b of weight n, whose alphabet corresponds to the above
four roots of

√
R4(u,b), i.e. a polylogarithm which upon differentiation produces only the denom-

inators {
1
b
,

1
b−4m2 ,

1
b− (W −m)2 ,

1
b− (W +m)2

}
. (1.6)

The functions defined in Eq. (1.5) are an obvious elliptic generalization of multiple polylogarithms
and we will refer to them for simplicity as elliptic polylogarithms from now on, in spite of the fact
that the name is already used in the literature with different meaning. Clearly, the two functions
I0(u),J0(u) seen above correspond to EG(0)(0,u) with n = 0 and k = 0 for a suitable choice of the
end points bi,b j.

In this talk we will study the properties of the above elliptic polylogarithms EG(n)(k,u), by
deriving the differential equations that they fulfill and then (in a kind of reverse engineering proce-
dure) by solving them with the usual Euler’s variation of constants approach. As a byproduct, we
will establish a number of (somewhat unexpected) identities between the new functions and prod-
ucts of polylogarithms and complete elliptic integrals. The literature on elliptic polylogarithms is
by now very vast, and similar functions to the ones considered here have been considered in [1–12],
using very different approaches. This contribution relies heavily on Ref. [13], to which we refer
for more details.

2. The differential equations

We start from the integration by parts (ibp) identities∫ b j

bi

db
d
db

(√
R4(u,b)bkg(n)(u,b)

)
= 0 ,

which are obvious as
√

R4(u,b) vanishes at both the end points. Working out explicitly the deriva-
tives one finds that:

i) the derivative of the first factor, (
√

R4(u,b)bk), can be written as a polynomial in (u,b)
divided by

√
R4(u,b), without affecting the factor g(n)(u,b), i.e. a combination, with coeffi-

cients depending on u, of the integrands appearing in the definition of functions EG(n)(k′,u)
with various values of k′ and the same g(n)(u,b);

ii) the derivative of the the polylogarithm g(n)(u,b), is itself a polylogarithm (or, more in gen-
eral, a combination of polylogarithms) of lower weight, say g(n−1)(u,b), divided by one
of the four denominators listed in Eq.(1.6); by writing the square root in the first factor as√

R4(u,b) = R4(u,b)/
√

R4(u,b) one sees from Eq.(1.2) that those denominators are always
compensated by one of the factors appearing in the definition of of R4(u,b) Eq.(1.2), so that,
again, one is left with a combination of terms corresponding to the integrands appearing in
the definition of some EG(n−1)(k′′,u).
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The identities are therefore linear combinations, with coefficients depending on u, of the func-
tions EG(n)(k,u) with various values of k (but the same weight n) and of functions EG(n−1)(k′,u)
(of lower weight) set equal to zero. One finds that the identities (used recursively, when needed) al-
low to express all the EG(n)(k,u) (for any non-negative integer k) in terms of three master integrals
of weight n

EG(n)(0,u), EG(n)(1,u), EG(n)(2,u),

and of EG’s of lower weight. As a consequence, one can write, for any non-negative integer s,

∫ b j

bi

db
(√

R4(u,b)bsg(n)(u,b)
)
= ∑

k=0,1,2
as(k,u)EG(n)(k,u),

where the as(k,u) are suitable polynomials in u. One can now take the derivative in u of the l.h.s. of
the previous equation, then the u-derivative of its r.h.s., and finally write that the two derivatives are
equal. The l.h.s. gives (when expressing everything in terms of the three above master integrals)

d
du

∫ b j

bi

db
(√

R4(u,b) bs g(n)(u,b)
)
=
∫ b j

bi

db
d

du

(√
R4(u,b) bs g(n)(u,b)

)
= ∑

k=0,1,2

(
bs(k,u)EG(n)(k,u)+ cs(k,u)EG(n−1)(k,u)

)
,

where the bs(k,u),cs(k,u) are suitable polynomials in u. Similarly, the derivative of the r.h.s. is

d
du ∑

k=0,1,2

(
as(k,u)EG(n)(k,u)

)
=

∑
k=0,1,2

(
d
du

as(k,u)
)

EG(n)(k,u)+ ∑
k=0,1,2

as(k,u)
d
du

EG(n)(k,u) .

The equality of the two derivatives gives a linear first order equation for a combination of the three
master integrals; one can take three such equations, corresponding to three different values of s,
and rewrite those three equations as

d
du

EG(n)(k,u) = ∑
k′=0,1,2

B(k,k′,u)EG(n)(k′,u)

+ ∑
k′=0,1,2

C(k,k′,u)EG(n−1)(k′,u) ,

i.e. a system of three linear differential equations for the three master integrals, where B(k,k′,u),
and C(k,k′,u) are rational functions of u. It is to be noted that the nine coefficients of the homoge-
neous part B(k,k′,u) are universal, i.e. are the same for all the possible choices of g(n)(u,b), while
the coefficients of the inhomogeneous part, the C(k,k′,u), depend on the actual value of g(n)(u,b).
All the coefficients are rational expressions in u, with the simple poles

1
u
,

1
u−m2 ,

1
u−9m2 .
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As an extension of an old result due to A. Sabry (1962) [14], it is convenient to introduce a
new set of master integrals with the change of basis

EG(n)
0 (u) = EG(n)(0,u) ,

EG(n)
1 (u) = EG(n)(1,u)− u+3m2

3
EG(n)(0,u) ,

EG(n)
2 (u) = EG(n)(2,u)− (u+3m2)EG(n)(1,u)+

(u+3m2)2

3
EG(n)(0,u) . (2.1)

We stress here the change of notation from the original basis of functions EG(n)(k,u), to the new
basis EG(n)

k (u). In the new basis the equations decouple into

d
du

EG(n)
1 (u) = ∑

k=0,1,2
C1k(u)EG(n−1)

k (u)

and

d
du

EG(n)
0 (u) = B00(u)EG(n)

0 (u)+B02(u)EG(n)
2 (u)+ ∑

k=0,1,2
C0k(u)EG(n−1)

k (u) ,

d
du

EG(n)
2 (u) = B20(u)EG(n)

0 (u)+B22(u)EG(n)
2 (u)+ ∑

k=0,1,2
C2k(u)EG(n−1)

k (u) , (2.2)

where the coefficients Bi j(u), Ci j(u) have the same structure as the B(k,k′,u), and C(k,k′,u) above;
again, the coefficients of the homogeneous part, Bi j(u), are universal, i.e. are the same indepen-
dently of the polylogarithm g(n)(u,b) entering in the definition of EG(n)(k,u) Eq.(1.5). Note that
EG(n)

0 (u),EG(n)
2 (u) do not appear in the equation for EG(n)

1 (u) and EG(n)
1 (u) does not appear in the

equations for EG(n)
0 (u), EG(n)

2 (u), while the EG(n−1)
k (u) appear in all the equations as inhomoge-

neous terms.
A two-by-two linear first order system implies a second order linear equation for a single

function; for the system (2.2), considering for simplicity only the homogeneous part of the system,
the second order equation for EG0(u), corresponding to n = 0 in the notation of (1.5), is

D
(

u,
d

du

)
EG0(u) = 0 , (2.3)

with

D
(

u,
d
du

)
=

{
d2

du2 +

[
1
u
+

1
u−m2 +

1
u−9m2

]
d
du

+
1

m2

[
− 1

3u
+

1
4(u−m2)

+
1

12(u−9m2)

]}
, (2.4)

and the accompanying function EG2(u) is given by

EG2(u) =
[
−2

3
u(u−m2)(u−9m2)

d
du

+

(
−1

3
u2 +

14
3

m2u+m4
)]

EG0(u) . (2.5)

In particular, the functions I0(u), J0(u), defined in Eq.s(1.3,1.4), satisfy Eq.(2.3), with the accom-
panying functions I2(u), J2(u), given by Eq.(2.5).

4
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As a by-product, if a function f (u) satisfies the equation

D
(

u,
d

du

)
f (u) = 0 ,

one has
f (u) = c1I0(u)+ c2J0(u) ,

where c1,c2 are two constants to be fixed by the boundary conditions.

3. Solving the equations

The differential equation for EG(n)
1 (u) is trivial and can be solved by quadrature. The sys-

tem of two differential equations for EG(n)
0 (u), EG(n)

2 (u) can be solved by the Euler’s method of
the variation of constants, which requires the knowledge of the two pairs of independent solu-
tions of the homogeneous equation. In our case, the homogeneous solutions are I0(u), I2(u) and
J0(u), J2(u), where I0(u), J0(u) are the complete elliptic integrals of first kind seen at the begin-
ning, while I2(u),J2(u), which can be obtained from Eq.(2.5), are in general linear combinations
of complete elliptic integrals of first and second kind. Euler’s method requires also the Wronskian
of the system, Ws(u) which in this case is found to be constant and equal to π

Ws(u) = I0(u)J2(u)− I2(u)J0(u) = π .

In the second order formalism, if the inhomogeneous equation is written as

D
(

u,
d
du

)
F(u) = N(u) ,

the solution à la Euler reads

F(u) =
[

c1−
∫ u

u0

dv
W (v)

N(v)J0(v)
]

I0(u)+
[

c2 +
∫ u

u0

dv
W (v)

N(v)I0(v)
]

J0(u) (3.1)

where W (v) is the Wronskian of the 2nd order equation

W (u) = I0(u)
d
du

J0(u)− J0(u)
d

du
I0(u)

=− 3π

2u(u−m2)(u−9m2)
. (3.2)

Note that W (u) is in general not identical to Ws(u). Eq. (3.1) is a sum of terms(
I0(u),J0(u)

)
×
(

F(n)(u), ...
)

where the functions F(n)(u) are different types of iterative integrals. The simplest instance of the
functions F(n)(u) is given by

F(n)(u) = I[n]k (pn, pn−1, .., p1;u)

5
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where I[n]k (pn, .., p1;u) is the (repeated) integration of Ik(u) or Jk(u) times (simple) rational factors

I[n]k (pn, pn−1, .., p1;u) =
∫ u

u0

dun

un− pn

∫ un

u0

dun−1

un−1− pn−1
..
∫ u2

u0

du1

u1− p1
Ik(u1) , (3.3)

or a similar formula with Jk(u1), with k = 0 or k = 2. More in general (and in the more inter-
esting cases), the rightmost term in the above formula can also be a product of elliptic integrals,
Ik(v)Ik′(v), Ik(v)Jk′(v), etc.

Eq.(3.3) reminds closely the definition of the Generalized-Goncharov polylogarithms

G[n]
k (pn, pn−1, .., p1;u) =

∫ u

u0

dun

un− pn

∫ un

u0

dun−1

un−1− pn−1
..
∫ u2

u0

du1

u1− p1
1 , (3.4)

where the rightmost factor is 1 (usually not written, of course) instead of Ik(u1) as in (3.3). When
using the Goncharov polylogarithms one can define

G[0](u) = 1 , G[−1](u) = 0 (3.5)

so that
d
du

G[0](u) = 0 ;

therefore, they satisfy the obvious relation

d
du

G[n](pn, pn−1, .., p1;u) =
1

u− pn
G[n−1](pn−1, .., p1;u)

for any non-negative integer n. A similar formula can be written also for the I[n]k (pn, pn−1, .., p1;u),

d
du

I[n]k (pn, pn−1, .., p1;u) =
1

u− pn
I[n−1]
k (pn−1, .., p1;u)

but it is valid only for n > 1, because the derivative of the rightmost factor, Ik(u) does not vanish

d
du

Ik(u) 6= 0 ,

but according to Eq.s(2.2) is a combination of I0(u) and I2(u). The same applies of course to
Jk(u), Ik(v)Ik′(v), etc.

If we refer to the number of integrations n as the weight of the functions I[n]k , clearly at weight
n = 1 the structure is non-trivial due to the presence of the elliptic integration kernels. The proper-
ties of the functions I[1]k ,J[1]k are easily investigated with the by now familiar ibp approach, i.e. by
considering all the integration by parts identities generated by a relation of the form∫ u

dv
d
dv

(
X(v)

)
= X(u) ,

where X(v) stands for all possible products of the form(
1, vn,

1
vn ,

1
(v−m2)n ,

1
(v−9m2)n

)
×
(

Ik(v) , Jk(v)
)
,

6
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where n is a positive integer. Note that, in general, it is not enough to consider integrals over the
Ik(u) and Jk(u) with factors of 1/(ν− p j)

n. Indeed, one finds that all the above (indefinite) integrals
can be expressed in terms of the just four master integrals∫ u

dv
(

1,
1
v
,

1
v−m2 ,

1
v−9m2

)
×
(

I0(v)
)
,

which involve only I0(v) (plus terms in Ik(u) arising from the end-point contributions).
A similar (but somewhat more complicated and interesting) pattern appear in the repeated

integration of higher order products, Ik(u)Ik′(u), Ik(u)Jk′(u), where it is essential to make use of
the Wronskian (3) to re-express all products of functions in terms of a subset of linear independent
ones.

4. Some results and Conclusion

A typical result of the reverse engineering is the identity∫ (W−m)2

4m2

db√
R4(u,b)

ln(b) =
2
3

ln(u−m2)
∫ (W−m)2

4m2

db√
R4(u,b)

=
2
3

ln(u−m2) I0(u) ,

a result which can be established by writing explicitly Eq.s(2.2) for the integral∫ (W−m)2

4m2

db√
R4(u,b)

ln(b)

and then solving the resulting equation à la Euler. The result can also be obtained by means of
the operator D(u,d/du), Eq.(2.4), by checking, with an explicitly calculation, the validity of the
relation

D
(

u,
d
du

)(∫ (W−m)2

4m2

db√
R4(u,b)

ln(b)− 2
3

ln(u−m2) I0(u)
)
= 0 .

Similarly, one can obtain∫ (W−m)2

4m2

db√
R4(u,b)

ln(b−4m2) =

(
1
2

ln(u−9m2)+
1
6

ln(u−m2)

)∫ (W−m)2

4m2

db√
R4(u,b)

− π

2

∫ 4m2

0

db√
−R4(u,b)

,

(note the different integration range in the last term), etc.
As a conclusion, the investigation of the properties of the integrals EG(n)

k (u), Eq.s(2.1,1.5)
brought us to introduce the second order differential operator D(u,d/du), Eq.(2.4), which can be
regarded as a destruction operator of the weight n of the functions EG(n)

k (u) (it decreases by one
the weight n when acting on those functions), while the Euler’s formula for the solution of the
so obtained equation provides with the corresponding creation operator, which increases by one
the same weight. As a result, one can in particular establish a new class of otherwise unexpected
identities.

7
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As a final remark, our approach is built up explicitly on top of the (elliptic) curve associated
to the physical 3-body phase space

R4(b,u) = b(b−4m2)((W −m)2−b)((W +m)2−b) .

Still, our method is more general and can be used to study similar functions stemming from differ-
ent elliptic curves, or even associated to higher genus surfaces. In the latter case, we expect classes
of functions which fulfil higher order differential equations, see for example the three-loop mas-
sive banana graph [15]. While of course the algebra of these functions will be more complicated,
conceptually there is no obstruction in applying the methods described here in order to simplify the
corresponding special functions. This will be studied in a future publication.
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