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1. Introduction

Scale dependence of physical observables in processes involving a large momentum transfer
is governed by the anomalous dimensions of the corresponding leading twist operators. In order to
make the theory description fully quantitative they have to be calculated to a sufficiently high order
in perturbation theory. At present, the anomalous dimensions of the twist-two operators are known
to NNLO accuracy (three loops) [1, 2]. These results are used in modern description of inclusive
reactions, e.g., at the LHC.

A remarkable progress in accelerator technologies in the last decades has made possible the
study of hard exclusive reactions with identified particles in the final state. The theoretical descrip-
tion of such reactions involves operator matrix elements between states with different momenta as
the nonperturbative input. The renormalization group equations (RGEs) for such matrix elements
are more complicated since one has to take into account the mixing with the operators involv-
ing total derivatives. The mixing matrix has a triangular form with the diagonal entries being the
anomalous dimensions. Nevertheless the off-diagonal contributions require a dedicated calculation.

A direct calculation in higher orders is rather complicated. However, tt has been known for
some time [3] that the form of mixing matrix is greatly constrained by the conformal symmetry.
The full evolution kernel at given order of perturbation theory is completely determined by the so-
called special conformal anomaly at one order less. This result was used to compute the two-loop
mixing matrix for twist-two operators in QCD [4, 5, 6] and obtain the two-loop evolution kernels
in non-froward kinematics [7, 8, 9].

An alternative technique was developed in Ref. [10]. Instead of studying conformal symme-
try breaking effects in the physical theory [4, 5, 6] it was suggested to use the exact conformal
symmetry of a modified theory – QCD in d = 4− 2ε dimensions at critical coupling. Utility of
this modified approach was demonstrated in [10] on several examples for scalar theories, and,
in [11, 12, 13] for flavor-nonsinglet operators in QCD.

The calculation of three-loop evolution kernel for flavor-nonsinglet operators [13] is summa-
rized below.

2. Evolution equations for light-ray operators

A renormalized light-ray operator [14] serves as the generating function for renormalized local
operators (in what follows we always assume MS scheme)

[O](x;z1,z2) = Zq̄(x+ z1n)/nq(x+ z2n) = ∑
m,k

zm
1 zk

2
m!k!

[
q̄(x)(

←
D ·n)m/n(n·

→
D)kq(x)

]
. (2.1)

The renormalization factor Z in this formulation is an integral operator in z1,z2 which is given by a
power series in 1/ε

Z = 1+
∞

∑
k=0

ε
−kZk(a) , Zk(a) =

∞

∑
`=k

a`Z(`)
k . (2.2)

The renormalized light-ray operator satisfies the RGE(
M∂M +β (a)∂a +H(a)

)
[O](x;z1,z2) = 0 , (2.3)
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where M is the renormalization scale, a = αs/4π ,

β (a) = M
da
dM

=−2a
(
ε +aβ0 +a2

β1 + . . .
)
=−2a(ε + β̄ (a)) , β0 =

11
3

Nc−
2
3

n f (2.4)

and H(a) is an integral operator acting on the light-cone coordinates of the fields. It has the follow-
ing form

H(a) = aH(1)+a2H(2)+a3H(3)+ . . . (2.5)

The evolution kernel can be written as

[H(a) f ](z1,z2) =
∫ 1

0
dα

∫ 1

0
dβ h(α,β ) f (zα

12,z
β

21) , (2.6)

where zα
12 = z1ᾱ + z2α and ᾱ = 1−α . The translation-invariant polynomials (z1− z2)

N are eigen-
functions of the evolution kernel,

H(a)zN
12 = γN(a) , zN

12 z12 = z1− z2 . (2.7)

with the eigenvalues γN(a) given by moments of the evolution kernel in the representation (2.6),

γN =
∫ 1

0
dα

∫ 1

0
dβ (1−α−β )Nh(α,β ) . (2.8)

The leading order kernel H(1) commutes with the canonical generators of collinear conformal trans-
formations

S(0)− =−∂z1−∂z2 , S(0)0 = z1∂z1 + z2∂z2 +2, S(0)+ = z2
1∂z1 + z2

2∂z2 +2(z1 + z2) , (2.9)

which obey the standard SL(2) commutation relations

[S0,S±] =±S± , [S+,S−] = 2S0 . (2.10)

As a consequence of the commutation relations [H(1),S(0)α ] = 0 the evolution kernel h(1)(α,β )

is effectively a function of one variable τ = αβ/ᾱβ̄ which is called the conformal ratio [15],
h(1)(α,β ) = h̄(τ). This function is completely determined by its moments (2.8).

This property is lost beyond the leading order. Nevertheless, one could expect that in a con-
formal theory, such as QCD in d = 4− 2ε dimensions at the critical point a = a∗ (β (a∗) = 0) in
particular, the evolution kernel commutes with the generators of conformal transformations. These
generators of course differ from their canonical form due to quantum corrections. In the MS scheme
the evolution kernel does not depend on the space-time dimension. As a consequence, the evolu-
tion kernels in QCD in four dimensions are exactly the same as in QCD in d = 4−2ε dimensions.
Therefore the QCD evolution kernel H(a) commutes with three operators [10, 11, 12]

[H(a),S+] = [H(a),S−] = [H(a),S0] = 0 (2.11)
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that satisfy the SL(2) algebra (2.10). These operators were constructed in [12] and have the follow-
ing form

S− = S(0)− ,

S0 = S(0)0 +∆S0 = S(0)0 +

(
β̄ (a)+

1
2
H(a)

)
,

S+ = S(0)+ +∆S+ = S(0)+ +(z1 + z2)

(
β̄ (a)+

1
2
H(a)

)
+(z1− z2)∆(a) . (2.12)

Here β̄ (a) is the QCD β -function (2.4) and S(0)α are the canonical generators (2.9). The form of the
generators S− and S0 is fixed from general consideration while S+ requires a dedicated calculation.

Since [S−,H(a)] = [S0,H(a)] = 0 the only nontrivial relation on the evolution kernel comes
from the last commutator [H(a),S+] = 0. It results in the following relation[

S(0)+ ,H(a)
]
=
[
H(a),z1 + z2

](
β̄ (a)+

1
2
H(a)

)
+
[
H(a),z12∆(a)

]
. (2.13)

Expanding the kernels in a power series in coupling constant

H(a) = aH(1)+a2H(2)+a3H(3)+ . . . , ∆(a) = a∆
(1)+a2

∆
(2)+ . . . (2.14)

one obtains from (2.13) a nested set of equations [10]

[S(0)+ ,H(1)] = 0 , (2.15a)

[S(0)+ ,H(2)] =
[
H(1),z1 + z2

](
β0 +

1
2
H(1)

)
+
[
H(1),z12∆

(1)] , (2.15b)

[S(0)+ ,H(3)] =
[
H(1),z1 + z2

](
β1 +

1
2
H(2)

)
+
[
H(2),z1 + z2

](
β0 +

1
2
H(1)

)
+
[
H(2),z12∆

(1)]+ [H(1),z12∆
(2)] , (2.15c)

so that the commutator [S(0)+ ,H(`)] is expressed in terms of the lower order kernels, H(k) and ∆(k)

with k ≤ `−1. The kernel ∆(1) was calculated in [9] and ∆(2) in [12].
The first of the equations Eq. (2.15a) states that the LO evolution kernel commutes with canon-

ical generators of the conformal transformations. As a consequence, the LO kernel h(1)(α,β ) can
be written as a function of the conformal ratio and restored from the spectrum of LO anomalous
dimensions.

The second equation, Eq. (2.15b), is a first-order inhomogeneous differential equation on the
NLO evolution kernel H(2). The solution is defined up to a solution of the corresponding homoge-
neous equation. This ambiguity is fixed by the requirement on the kernel to reproduce the correct
anomalous dimensions. The straightforward calculation [11] to restore the kernel becomes too
complicated for the NNLO kernel. Below we describe a different (algebraic) method used in [13].

3. Similarity transformation

The generators Sα in an interacting theory (2.12) involve the evolution kernel H(a) and addi-
tional contribution ∆(a) due to the conformal anomaly. It is convenient to separate these term by a

3
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similarity transformation

H= U−1 HU , S±,0 = U−1 S±,0 U . (3.1)

The operators, H and H, have the same spectrum. Note also that going over to the “boldface” oper-
ators can be thought of as a change of the renormalization scheme, [O(z1,z2)]U = U [O(z1,z2)]MS.
The new operator satisfies the RGE(

M∂M +β (a)∂a +H(a)−β (a)∂aU ·U−1
)
[O(z1,z2)]U = 0 . (3.2)

One can use this freedom to bring the generators Sα into the "canonical" form

S− = S(0)− , S0 = S(0)0 +

(
β̄ (a)+

1
2

H(a)
)
, S+ = S(0)+ +(z1 + z2)

(
β̄ (a)+

1
2

H(a)
)
. (3.3)

Looking for the operator U in the form

U = eX , X(a) = aX(1)+a2X(2)+ . . . , (3.4)

and assuming that [S(0)− ,X(k)] = [S(0)0 ,X(k)] = 0 we get the following equations on X(k)

[
S(0)+ ,X(1)]= z12∆

(1) ,[
S(0)+ ,X(2)]= z12∆

(2)+
[
X(1),z1 + z2

](
β0 +

1
2
H(1)

)
+

1
2

[
X(1),z12∆

(1)
]
. (3.5)

Note, that these equations fix X(k) up to SL(2) invariant parts. In order words the transformation
which brings the generators to the canonical form (3.3) is not unique. The one-loop kernel, X(1),
turns out to be rather simple

X(1) f (z1,z2) = 2CF

(∫ 1

0
dα

lnα

α

[
2 f (z1,z2)− f (zα

12,z2)− f (z1,zα
21)
])

+∆X(1)
inv f (z1,z2) . (3.6)

The two-loop operator, X(2) can be written as the sum of three terms

X(2) = X(2)
I +X(2,1)

(
β0 +

1
2
H(1)

)
− 1

2
X(2,2) (3.7)

corresponding to the three contributions on the r.h.s. of Eq. (3.5), The explicit expressions for the
kernels X(2)

I , X(2,1), X(2,2) are quite involved and can be found in [13].
The operator H satisfies the set of equations (2.15c) with all terms containing the conformal

anomaly ∆ removed

[S(0)+ ,H(1)] = 0,

[S(0)+ ,H(2)] =
[
H(1),z1 + z2

](
β0 +

1
2

H(1)
)
,

[S(0)+ ,H(3)] =
[
H(1),z1 + z2

](
β1 +

1
2

H(2)
)
+
[
H(2),z1 + z2

](
β0 +

1
2

H(1)
)
. (3.8)
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The solution can be written in the form

H(1) = H(1)
inv ,

H(2) = H(2)
inv +T(1)

(
β0 +

1
2

H(1)
inv

)
, (3.9)

H(3) = H(3)
inv +T(1)

(
β1 +

1
2

H(2)
inv

)
+T(2)

1

(
β0 +

1
2

H(1)
inv

)2

+

(
T(2)+

1
2
(
T(1))2

)(
β0 +

1
2

H(1)
inv

)
,

where H(k)
inv are (canonically) SL(2)-invariant operators with kernels that are functions of the con-

formal ratio and the operators T(i) commute with S(0)− and S(0)0 and obey the following equations:

[S(0)+ ,T(1)] = [H(1)
inv,z1 + z2], [S(0)+ ,T(2)] = [H(2)

inv,z1 + z2] , [S(0)+ ,T(2)
1 ] = [T(1),z1 + z2] . (3.10)

Similar to the X kernels the T kernels are fixed by Eqs. (3.10) up to SL(2) (canonically) invariant
terms. The SL(2)-invariant kernels H(k)

inv can be written in the following general form

H(k)
inv f (z1,z2) = Γ

(k)
cusp

∫ 1

0
dα

ᾱ

α

(
2 f (z1,z2)− f (zα

12,z2)− f (z1,zα
21)
)
+χ

(k)
0 f (z1,z2)

+
∫ 1

0
dα

∫
ᾱ

0
dβ

(
χ
(k)
inv (τ)+χ

P(k)
inv (τ)P12

)
f (zα

12,z
β

21) . (3.11)

Here zα
12 = z1ᾱ + z2ατ = αβ/(ᾱβ̄ ) and P12 is the permutation operator, P12 f (z1,z2) = f (z2,z1).

Γcusp is the cusp anomalous dimension which is known to the required accuracy [1]. The LO
expression for the χ-functions corresponds to

χ
(1)
0 = 2CF , χ

(1)
inv (τ) =−4CF , χ

P(1)
inv (τ) = 0 . (3.12)

and

χ
(2)
0 =

1
3

CF

{
β0
(
37−4π

2)+CF
(
43−4π

2)+ 1
Nc

(
26−8π

2 +72ζ3
)}

,

χ
(2)
inv (τ) = 4CF

{
−11

3
β0 +CF

[
ln τ̄− 20

3
+

2π2

3

]
− 2

Nc

(
Li2(τ)+

1
2

ln2
τ̄− 1

τ
ln τ̄− π2

6
+

5
3

)}
,

χ
P(2)
inv (τ) =−4CF

Nc

(
ln2

τ̄−2τ ln τ̄

)
. (3.13)

The corresponding expressions for the T kernels take the form:

T(k) f (z1,z2) =−Γ
(k)
cusp

∫ 1

0
dα

ᾱ ln ᾱ

α

(
f (zα

12,z2)+ f (z1,zα
21)
)

+
∫ 1

0
dα

∫
ᾱ

0
dβ ln(1−α−β )

(
χ
(k)
inv (τ)+χ

P(k)
inv (τ)P12

)
f (zα

12,z
β

21) , (3.14)

and

T(2)
1 f (z1,z2) =−

∫ 1

0
dα

ᾱ ln2
ᾱ

2α

[
f (zα

12,z2)+ f (z1,zα
21)
]
+
∫ 1

0
dα

∫
ᾱ

0
dβ

ln2(1−α−β )

2
f (zα

12,z
β

21) .

(3.15)
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Equations (3.14), (3.15) together with the expression for the kernel X fix the noninvariant part part
of the NNLO evolution kernel (with respect to the canonical generators S(0)α )

H(1) = H(1) = H(1)
inv ,

H(2) = H(2)+[H(1),X(1)] = H(2)
inv +T(1)

(
β0 +

1
2

H(1)
inv

)
+[H(1)

inv,X
(1)] ,

H(3) = H(3)+[H(2),X(1)]+ [H(1),X(2)]+
1
2
{H(2),(X(1))2}

= H(3)
inv +T(1)

(
β1 +

1
2

H(2)
inv

)
+T(2)

1

(
β0 +

1
2

H(1)
inv

)2

+

(
T(2)+

1
2
(
T(1))2

)(
β0 +

1
2

H(1)
inv

)
+[H(2)

inv,X
(1)]+

1
2
[
T(1)H(1)

inv,X
(1)]+ 1

2
[
H(1)

inv,X
(2,1)]H(1)

inv +[H(1)
inv,X

(2)
I ]

+β0

([
T(1)

inv,X
(1)]+ [H(1)

inv,X
(2,1)])+ 1

2
[[

H(1)
inv,X

(1)],X(1)]− 1
2
[
H(1)

inv,X
(2,2)], (3.16)

Here all entries are known except for the SL(2)-invariant part of the three-loop kernel H(3)
inv. It has

to be determined from the three loop anomalous dimensions [1].

4. Three-loop invariant kernel H(3)
inv and Gribov - Lipatov reciprocity relation

The three-loop invariant kernel H(3)
inv takes the form

H(3)
inv f (z1,z2) = Γ

(3)
cusp

∫ 1

0
dα

ᾱ

α

(
2 f (z1,z2)− f (zα

12,z2)− f (z1,zα
21)
)
+χ

(3)
0 f (z1,z2)

+
∫ 1

0
dα

∫
ᾱ

0
dβ

(
χ
(3)
inv (τ)+χ

P(3)
inv (τ)P12

)
f (zα

12,z
β

21) . (4.1)

The cusp anomalous dimension Γ
(3)
cusp is known with three-loop accuracy [1]. Thus we have to

determine the constant χ
(3)
0 and two functions of one variable, χ

(3)
inv (τ) and χ

P(3)
inv (τ). This can be

achieved by using the information on the spectrum of the invariant kernel H(3)
inv

H(3)
inv(z1− z2)

N = γ
(3)
inv (N)(z1− z2)

N . (4.2)

Making use of Eqs. (3.9) and (3.14), (3.15) it can be shown that

γ
(3)
inv (N) = γ

(3)(N)−
(

β1 +
1
2

γ
(2)(N)

)
d

dN
γ
(1)(N)−

(
β0 +

1
2

γ
(1)(N)

)
d

dN
γ
(2)(N)

+
1
2

(
β0 +

1
2

γ
(1)(N)

)(
d

dN
γ
(1)(N)

)2

. (4.3)

The anomalous dimensions γ
(3)
inv (N) can be promoted to a function of the complex variable N. As

usual it has to be done separately for even and odd values of N

γ
(3)
inv (N) = γ

(3+)
inv (N)+(−1)N

γ
(3−)
inv (N) . (4.4)

6
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It can be shown [13] that the splitting functions corresponding to the anomalous dimensions γ
±
inv

satisfy the Gribov-Lipatov reciprocity relation [16]

γ
(3±)
inv (N) =−

∫ 1

0
dxxNH(3±)

inv (x) , H(3±)
inv (x) =−xH(3±)

inv (1/x) . (4.5)

The kernels χ,χP are completely determined by the anomalous dimensions and can be restored as
follows [11]

χ
(3)
inv (τ) =

1
2πi

∫ c+i∞

c−i∞
dN (2N +3)∆γ

(3+)
inv (N)PN+1

(
1+ τ

1− τ

)
,

χ
P(3)
inv (τ) =

1
2πi

∫ c+i∞

c−i∞
dN (2N +3)γ

(3−)
inv (N)PN+1

(
1+ τ

1− τ

)
, (4.6)

where

∆γ
(3+)
inv (N) = γ

(3+)
inv (N)−2Γ

(3)
cusp
[
ψ(N +2)−ψ(2)

]
−χ

(3)
0 , (4.7)

and PN+1 is the Legendre function. All singularities of the anomalous dimensions have to lie to
the left of the integration contour. The representation (4.6) is not very practical since three loop
anomalous dimensions are expressed in terms of the harmonic sums whose analytic properties are
not well studied. However, starting from Eqs. (4.6) one can obtain a representation for the kernels
in terms of the corresponding splitting functions. Namely,

χ(τ) =− 1
2πi

∫ c+i∞

c−i∞
dρ

(
τ

τ̄

)ρ Γ(2ρ +2)
Γ2(1+ρ)

∫ 1

0
dxH(x)

1
xx̄

(
1+ x
1− x

)( x
x̄2

)ρ

. (4.8)

We cannot calculate this integral analytically for exact splitting functions. However, one can try to
use some approximation for H. We use a parametrization for the splitting functions consistent with
the reciprocity relations and separate the leading contributions at x→ 0 and x→ 1

∆H(3+)
inv (x) =

4

∑
k=1

B(3+)
k φk(x)+ x̄C(3+)

0 + x̄C(3+)
1 ln

( x
x̄2

)
+δH(3+)

inv (x) ,

H(3−)
inv (x) =

4

∑
k=1

B(3−)
k φk(x)+ x̄C(3−)

0 +δH(3−)
inv (x) . (4.9)

The functions φk are defined recursively:

φ0(x) = 1− x , φk(x) =
∫ 1

x

dξ

ξ
φk−1(ξ )φ0(x/ξ ) ,

∫ 1

0
dxx j−2

φk(x) =
(

1
j( j−1)

)k+1

.

The coefficients B(3±)
k , C3±

k can be extracted from the expression for the splitting functions and the
remainder functions δH(3±)

inv (x) we parameterize as follows

δH(3±)
inv (x) = x̄ h±(x/x̄2) , h±(t) = H±0

a±
t +a±

(
1+

b± t
t +a±

)
. (4.10)

7
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χinv(τ)

τ

χP
inv(τ)

τ

Figure 1: Invariant functions χinv(τ) (left panel) and χP
inv(τ) (right panel) for αs/π = 0.1. The LO result

(short dashes) is shown together with the NLO (long dashes) and NNLO (solid curves). The NNLO results
using exact O(a3) functions obtained by the numerical integration of Eq. (4.6) are shown by black dots for
comparison.

With this simple parametrization one can achieve the accuracy (δH(3±)
inv |fit−δH(3±)

inv |exact)/H(3±)
inv <

0.5% in the whole range of x. The numerical values for the parameters of the fit can be found
in [13].

The integrals (4.8) with the splitting functions (4.9) can be calculated analytically. We show
in Fig. 1 the full NNLO invariant functions χ(a) = aχ(1)+a2χ(2)+a3χ(3) together with the NLO,
O(a2), and the LO, O(a), ones for a typical value of the coupling αs/π = 0.1 and for definiteness,
n f = 4. The exact NNLO results obtained by the numerical integration of Eq. (4.6) are shown by
dots. One sees that the accuracy of the parametrization is rather good. The remaining entries in the
invariant kernel, (Eq. (3.11)) for the same values of flavors and coupling constant, are

Γcusp = aΓ
(1)(1+8.019a+80.53a2 + . . .) = aΓ

(1)(1+0.2005+0.0503+ . . .) ,

χ0 = aχ
(1)
0 (1−0.7935a−141.3a2 + . . .) = aχ

(1)
0 (1−0.0198−0.0883+ . . .) . (4.11)

5. Summary

The evolution equation for the flavor non-singlet leading twist operators is known now with
three loop accuracy [12, 13]. The non-invariant part of the evolution kernel was obtained in an
explicit form while for the invariant part a rather accurate approximation was developed. The
matrix of the anomalous dimensions for the local operators up to dimension D ≤ 10 was also
presented [13]. These results can be used for studying the scale dependence of generalized parton
distributions, see e.g. [17, 18], or light-cone meson distribution amplitudes.
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