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1. Introduction

The Gross-Neveu-Yukawa (GNY) models constitute a UV completion for the Gross-Neveu

(GN) models in D = 4 dimensions. The latter describe fermionic systems with a four fermion

interaction and are extensively used as effective models in fermionic condensed matter systems.

Depending on the realized global symmetry distinct models can be written down. In the case

where the fermions couple via a single, real (for example z-) component of their spin to each other,

we obtain the Ising type of the GN model. In case one couples them via a scalar product of their

three dimensional (real) spin vector, one is dealing with the Heisenberg type of the GN model. A

single complex component coupling leads to the XY type.

Within the given models one is interested in the determination of critical exponents of the

coupling and fields at the infrared (IR) fixed point.

It turns out that the GN models exhibit strong dynamics in D = 3, that means a perturbative

expansion in a small coupling constant will not allow for a direct determination of critical exponents

at the IR fixed point in D = 3.

In order to directly solve the given strong problems in D = 3 one can apply Monte Carlo

(MC) [2, 3, 4, 5, 6], Conformal Bootstrap (CBS) [7, 8, 9, 10], (non-perturbative) Functional Renor-

malization Group (FRG) [11, 12, 13, 14, 15] methods or determinations within the large N expan-

sion [16, 17, 18, 19, 20, 21, 22, 23], where N is the number of fermion copies.

A more indirect way – which we follow here – is to apply perturbation theory in small cou-

plings for the UV completed model of GN around D = 4 and then continue the results for critical

exponents back to D = 3. This we can do under the assumption that physical observables like

critical exponents do exist in D dimensions. The agreement of predictions within the original GN

model and its UV completion (the corresponding GNY model) is guaranteed by the fact that they

belong to the same universality class and thus share the same symmetries and degrees of freedom

in the relevant low energy region. A similar perturbative calculation for the GN model in D = 2

dimensions was carried out in Ref. [24].

In four dimensions the four fermion interactions contained in GN models are not renormalize-

able and should be interpreted as effective interaction of an additional, unresolved bosonic scalar

field. The latter is exchanged between pairs of two fermions via Yukawa type interactions. This

interaction promotes the GN model to the GNY model after one adds a kinetic term for the scalar to

make it dynamical and grants it at least one quartic scalar interaction. In condensed matter physics

one says that the GNY model is obtained from GN model via bosonization.

Because the new scalar field has to obey the global symmetry of the fermion interaction the

number and type of components is fixed. In the case of the Ising setup it is a single real valued

field. In the case of the Heisenberg model it is a real three-vector field. For XY we have a single

complex component field.

A very special feature of the given models is that the fermions obey a linear dispersion relation

without a gap (no mass). Such a dispersion relation can be realized in a honey comb lattices

at the Dirac point. That means that the Lagrangian looks quasi relativistic and has Lorenzian

symmetry. Although this symmetry is rather emergent in the low energy regime of the described

solid state systems and not exact, it allows us to apply computational methods developed for high

energy particle physics, where one assumes that Lorentz symmetry is an exact symmetry of nature.
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Because the fermions have no mass/gap and we do not include any terms in the Lagrangian with

odd number of scalars (except of the Yukawa coupling). There is another global chiral symmetry,

which will keep the fermions massless and ensure the absence of interactions involving any odd

number (greater than one) of scalars when taking quantum corrections into account.

2. Lagrangians for GNY

The action for the GNY models is given by:

Sλ =

∫

dτdD−1x(Lψ +Lψφ ,λ ) . (2.1)

Where the index λ ∈ {χI ,χXY ,χH} keeps track of the three different global symmetries leading to

the chiral Ising, chiral XY and chiral Heisenberg GNY model. All GNY models that are discussed

here share the same kinetic term Lψ for N fermions:

Lψ = ψ̄(x)/∂ ψ(x) . (2.2)

Here we use the shorthand /∂ = γµ∂µ where the γ’s obey a four-dimensional representation of the

Clifford algebra, {γµ ,γν}= 2δµν14, with µ ,ν ,= 0,1, ...D−1.

The chiral Ising model has a global Z2 symmetry (φ ∈R) and the remaining terms in the action

read

Lψφ ,χI
= gφψ̄ψ + 1

2
φ(m2 −∂ 2

µ)φ +λφ4 . (2.3)

The chiral XY model has a global U(1) symmetry (φ ∈ C)

Lψφ ,χXY
= gφψ̄P+ψ +gφ∗ψ̄P−ψ + |∂µφ |2 +m2|φ |2 +λ |φ |4 . (2.4)

Here P± = 1
2
(1± γ5) an γ5 is kept naively anticommuting {γ5,γµ}=0.

For the chiral Heisenberg model the global symmetry is of SU(2) type (φ ∈ R
3)

Lψφ ,χH
= g ψ̄(~φ ·~σ)ψ + 1

2
~φ ·

(

m2 −∂ 2
µ

)

~φ +λ
(

~φ ·~φ
)2

. (2.5)

Here ~σ is the vector of three Pauli matrices which are proportional to the generators of SU(2) in

the fundamental representation.

For all three models one faces a spontaneous breakdown of the specific global symmetry when

the mass parameter m2 becomes smaller than zero, because the scalar potential is not at its minimum

value for φ = 0. Choosing the state with minimal energy to be the ground or vacuum state |0〉

of the corresponding QFT then leads to a non-vanishing vacuum expectation value 〈0|φ |0〉 = v

(VEV) for the corresponding scalar field. When one assumes that the parameter m2 can be freely

tuned (depending on some macroscopic parameter of the system) one thus observes a Quantum

Phase Transition (QPT) whenever m2 goes through the critical value zero. In the following we are

interested in the critical exponents of the fields and couplings at the Quantum Critical Point (QCP)

(m2 = 0) of such a phase transition.
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3. Z-Factors in Perturbation Theory

In order to perturbatively calculate quantum corrections to the critical exponents at the phase

transition, one needs to regularize and renormalize the given Lagrange densities in a first step. For

convenience we choose Dimensional Regularization (DREG) as regulator and employ the com-

monly used MS scheme for the subtraction of UV divergences.

Because the given models are renormalizeable around D = 4 all appearing UV divergences –

regulated in terms of poles in small ε (= 4−D) – can be absorbed in Z-factors via a redefinition of

parameters and fields:

φ → φ0 =
√

Zφ φ , ψ → ψ0 =
√

Zψψ ,

λ → λ 0 =µε Zλ λ , g → g0 =µε/2Zgg , m2 → (m2)0 =Zm2m2

At tree-level all Z−factors are equal to one. With growing order in perturbation theory the Z-factors

depend polynomial on the self coupling λ and Yukawa coupling g to higher powers. Plugging in

the redefinition of fields and couplings in the Lagrangian, using the shorthands

Zφ 4 =Zλ Z2
φ , Zψψφ = Zg

√

Zφ Zψ , Zφ 2 = Zφ Zm2 ,

one obtains

LχI
=ZψLψ +Zψψφgφψ̄ψ + 1

2
φ(Zφ 2 m2 −Zφ ∂ 2

µ)φ +Zφ 4λφ4 . (3.1)

LχXY
=ZψLψ +Zψψφg(φψ̄P+ψ +φ∗ψ̄P−ψ)

+Zφ |∂µφ |2 +Zφ 2m2|φ |2 +Zφ 4λ |φ |4 . (3.2)

LχH
=ZψLψ +Zψψφg ψ̄(~φ ·~σ)ψ

+ 1
2
~φ ·

(

Zφ 2m2 −Zφ ∂ 2
µ

)

~φ +Zφ 4λ
(

~φ ·~φ
)2

. (3.3)

In order to determine the Z-factors for the given model one has to extract the UV-divergent

pieces of the n-point Green function depicted in Fig. 1 for any suitable kinematics order by order

in the loop expansion. In Fig. 2 we show specific example diagrams for the chiral Ising and chiral

∼ Zφ 2 ,Zφ ∼ Zψ ∼ Zψψφ ∼ Zφ 4

Figure 1: Considered n-point Green function for the extraction of required Z-factors. The white blob

indicates the sum of all possible 1-PI L-loop graphs. The φ /es label scalar boson/fermion lines.

Heisenberg case.

It turns out that one can factorize all diagrams appearing in the chiral Heisenberg case into

a chiral Ising diagram times a SU(2) spin weight factor when one uses projectors on the relevant

3
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Figure 2: Explicit diagram examples for the chiral Ising/Heisenberg Model

λ L 1 2 3 4 Σ

χ
X

Y

Zφ 2 ,Zφ 2 9 112 2198 2321

Zψ 2 14 200 4014 4230

Zψψφ 2 41 1002 28701 29746

Zφ 4 9 173 5029 147023 152234

χ
I&

χ
H

Zφ 2 ,Zφ 2 6 36 358 402

Zψ 1 4 31 323 359

Zψψφ 1 11 145 2199 2356

Zφ 4 9 93 1476 26976 28554

λ L 1 2 3 4 Σ

χ
∗ X

Y

Zφ 2 ,Zφ 2 4 22 148 176

Zψ 1 3 16 116 136

Zψψφ 0 2 25 296 323

Zφ 4 4 35 369 4388 4796

χ
M I

Zφ 2 ,Zφ 2 5 27 213 247

Zψ 1 4 29 283 317

Zψψφ 1 10 125 1779 1915

Zφ 4 6 57 773 12549 13385

Table 1: Number of diagrams encountered during Z-factor calculation in dependence of the model, loop

number L and specific n-point function. Here the χ∗
XY model refers to the χXY -Lagrangian which is defined

in Ref. [25] and χM
I is the chiral Ising Model assuming a Majorana instead of a Dirac fermion.

SU(2) structures. The latter can therefore be calculated separately for each diagram and the transi-

tion from Ising to Heisenberg amplitudes can be done by multiplying diagram specific spin weight

factor to the Ising diagram result.

Therefore the number of diagrams encountered in the Ising and Heisenberg case agree when

considering Dirac fermions. In Tab. 1 we list the number of 1-PI Diagrams in dependence of the

specific model, the number of loops L and type of n-point function under consideration. From the

numbers it becomes clear that a hand calculation beyond two loops is not feasible anymore and one

has to apply automated computer algebra to perform the calculation.

4. Technical Details

The calculation of the Z-factors is performed within a fully automated setup. We chose the

kinematics such that we have one small external momentum in case of the 2-point functions and

for 3- and 4-point functions all external momenta are set to zero. To prevent the appearance of

IR divergences the infrared rearrangement which was suggested in Ref. [26] and further developed

in Ref. [27] is used in order to rewrite all massless propagators in terms of massive propagators

depending on a single artificial large mass via an exact decomposition which is only violated in

finite pieces. This is not a problem as long as the renormalization is done via explicit counter

term insertion ensuring that all sub-divergences have been canceled before the overall divergence

is determined.
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Note that the same method has been used to calculate the five-loop QCD β -function and

anomalous dimensions very recently [28]1 and agrees with the result of a different evaluation

method [29, 30]1. After rewriting all propagators one then is left with massive tadpole integrals

in dependence of a single mass scale. Up to including three loops one can use MATAD [31] to

automatically reduce all of the integrals via integration-by-parts identities on the fly.2

The used setup runs through the following steps in order to arrive at an integrated result

1. QGRAF[33] is used to generate complete sets of Feynman diagrams.

2. Q2E and EXP[34] are used to map all Feynman diagrams on single scale massive tadpole

integral topologies and to generate FORM readable source files.

3. FORM[35, 36, 37] creates all counterterm insertions, performs the traces over the Clifford

algebra, calculates the SU(2) spin weight factors with the package COLOR[38] and rewrites

the amplitudes in terms of massive tadpole integrals with different powers of propagators. Fi-

nally it reduces all appearing integrals to a set of master integrals with a predefined reduction

table. At the four loop level there are nineteen master integrals[39].

4. The reduction table is created by CRUSHER[40] up to including four loops and relies on

integration-by-parts identities relating integrals with different propagator powers through a

system of coupled equations to each other. This system of equations can be solved with the

Laporta algorithm [41] such that all appearing integrals can be written in terms of a linear

combination of a finite number of master integrals.

5. A fully automated renormalization program written in FORM is used to extract the Z-factors

order by order in the loop expansion from the bare amplitude results.

5. β - and γ-Functions

The β -functions and anomalous dimensions of the fields can be directly obtained from the Z-

factors. After introducing the redefined coupling constants g2/(8π2)→ y and λ/(8π2)→ λ they

are given by:

βα =
d α

d ln µ
α ∈ {y,λ} , γx =

d lnZx

d ln µ
x ∈ {ψ ,φ ,φ2} . (5.1)

In order to keep track of the model λ ∈ {χI ,χH ,χXY} and the contribution from the n-th loop order

up to four loops we write

βα ,λ =− εα +β (1L)

α ,λ +β (2L)

α ,λ +β (3L)

α ,λ +β (4L)

α ,λ , (5.2)

γx,λ = γ (1L)

x,λ + γ (2L)

x,λ + γ (3L)

x,λ + γ (4L)

x,λ . (5.3)

1see also the corresponding proceedings contribution in here
2At the four loop level the program FMFT [32] has recently been published.
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As an example for the obtained results we show the β s and γs for the chiral Ising model up to

including 2 loops:

β (1L)
y,χI = (3+2N)y2 , β (2L)

y,χI = 24yλ (λ − y)−
(9

8
+6N

)

y3 , (5.4)

β (1L)

λ ,χI
= 36λ 2 +4Nyλ −Ny2 , β (2L)

λ ,χI
= 4Ny3 +7Ny2λ −72Nyλ 2 −816λ 3 , (5.5)

γ (1L)
ψ ,χI =

y

2
, γ (2L)

ψ ,χI =−
y2

16
(12N +1) , (5.6)

γ (1L)
φ ,χI = 2Ny , γ (2L)

φ ,χI = 24λ 2 −
5Ny2

2
, (5.7)

γ (1L)

φ 2,χI
=−12λ , γ (2L)

φ 2,χI
= 144λ 2 −2Ny(y−12λ ) . (5.8)

The shown two loop results are in agreement with the one obtained in Ref. [42]. The recently

evaluated three loop corrections for the chiral Ising and chiral Heisenberg model [43]– which had

been obtained with MATAD – were reproduced with the self written table based Integrator.

For the chiral XY model the Feynman rules were implemented according to the stated La-

grange density in Eq. (3.2), which yields a quite large number of Feynman diagrams (see Tab. 1)

per loop level, because the fermion flow inside a closed fermion loop (∼ N) is not restricted. That

means for each diagram with a closed fermion loop there is always another diagram which agrees

with the original one up to the reversed fermion flow within this very loop. A more economic

parametrization of the problem was used in Ref. [25] where the Lagrange density of the XY model

has been written in terms of a double charged scalar cooper pair field which involves the treatment

of an indefinite fermion flow in each diagram such that two electrons can couple to a Cooper pair

field. The heavily reduced number of diagrams in this case can be found in Tab. 1 for λ = χ∗
XY .

However, both implementation yield the same Z-factors up to including four loops. This is an

expected result and serves as strong check, because both models are within the same universality

class. That means the three loop results presented here for the XY model are in agreement with

the ones given in Ref. [25] which were obtained with full N dependence but only published for

N = 1/2.

We refrain from explicitly showing all results up to including four loops in this contribution,

but refer the reader to Ref. [1].

6. Critical Exponents at the QCP

An IR fixed point exists for µ → 0 when the β -functions vanish for certain coupling values

α∗ = {y∗,λ ∗}. When the corresponding Jacobi matrix [M ]i j = ∂βαi
/∂α j (which in this case is

called stability matrix) has only positive eigenvalues ω ,ω
′

(ω ≤ ω
′
) evaluated at α∗, then the cor-

responding fixed point is called stable. In this case the Renormalization Group Equations (RGEs)

make the couplings flow into a single fixed point from all directions in its vicinity with decreasing

µ . If one or all eigenvalues is/are equal or smaller than zero the corresponding fixed point is called

IR unstable and the RGEs will make the couplings flow away from it when µ is lowered. The

eigenvalues ω and ω ′ are called stability exponent, where ω ′ is less relevant, because it is larger

than ω .

6
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We can now solve the β -functions order by order in ε for their zeros and obtain an expansion

of y∗ and λ ∗ in terms of polynomials in ε . Besides the trivial Gaussian α∗ = {0,0} and Wilson-

Fischer fixed point α∗ = {0,λ ∗} (which are unstable) there is (for all models) a non-trivial fixed

point with y∗ 6= 0,λ ∗ 6= 0. From the result of the β - and γ-functions up to four loops one can

determine the corresponding polynomial for y∗ and λ ∗ in ε up to including the ε4 term.

This allows for the determination of anomalous dimensions at such a fix point γ∗x = γx(α
∗) and

the correlation length exponent via

ν−1 = 2+ γ∗φ 2 − γ∗φ . (6.1)

At the quantum phase transition the given exponents define the behavior of the corresponding order

parameter ξ in dependence of a reduced parameter t to be

ξ ∼ |t|−ν(1+C|t|ω + ...) .

The latter t = (mc−m)/mc describes the deviation from a critical mass value mc at which the phase

transition takes place.

As an explicit example for the obtained result one can set N = 1/2 in the chiral XY model and

investigate the fixed point at y∗ 6= 0,λ ∗ 6= 0:

γ∗φ = γ∗ψ = ε/3+O(ε5) , (6.2)

ν−1 = 2− ε +
ε2

3
−

(

2ζ3

3
+

1

18

)

ε3 +
1

540

(

420ζ3 +1200ζ5 −3π4 +35
)

ε4 +O(ε5) , (6.3)

ω = ε −
ε2

3
+

(

2ζ3

3
+

1

18

)

ε3 −
1

540

(

420ζ3 +1200ζ5 −3π4 +35
)

ε4 +O(ε5) . (6.4)

That means the polynomials for the anomalous dimensions at the fixed point are the same for the

fermion and the boson. Further, there appear no contributions beyond the one loop level. We

further see ν−1 = 2−ω . It turns out that already the two β - and γ-functions for couplings and the

fields do agree up to including four loops when setting y equal to λ (after a suitable redefinition see

Ref. [44]). One can further check that the β -function in this limit do reproduce the four loop Wess-

Zumino result obtained in Ref. [45]. The reason for this is that at the IR fixed point the system

is described by an emergent N = 2 super symmetric theory (SUSY). That means the fermion

and scalar live in the same supermultiplet Φ and the N = 2 super symmetric Lagrangian involves

only a single coupling. The simple relation between ω and 1/ν is in fact a consequence of the

analytic property of the super potential in this Lagrangian. Further, the SUSY property allows one

to extract the correlation length exponent 1/ν which depends by definition on the renormalization

of the mass m of the scalar, without calculating the relevant Zφ 2 (see Ref. [25]). However, in the

presented calculation Zφ 2 was explicitly calculated and provides a strong check of the result.

Concerning the stability of the fixed point one can see that the stability coefficient ω in

Eq. (6.4) becomes negative when naively setting ε = 1 in order to extrapolate to D = 3, as soon as

one includes the four loop term. So in a naive/conservative approach to the stability question one

cannot guarantee that the fixed point stays stable down to D = 3 (like it would be the case when

doing the analysis up to including three loops, only). However, it is known that the obtained series

can be of asymptotic nature and more sophisticated extrapolation are required. As a first step one

7
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χI(N = 1/4) 1/ν ηφ ηψ ω

P[2/2] 1.415 0.171 0.171 0.843

P[3/1] 1.415 0.170 0.170 0.838

FRG[14] (R1) 1.385 0.174 0.174 0.765

FRG[14] (R2) 1.395 0.167 0.167 0.782

CBS[9] 0.164 0.164

χXY (N = 1/2) 1/ν ηφ ηψ ω

P[2/2] 1.128 1/3 1/3 0.872

P[3/1] 1.130 1/3 1/3 0.870

CBS[46] 1.090 1/3 1/3 0.910

Table 2: Selected numerical results for the critical exponents at D = 3 using regular Padé approximants con-

fronted with results from literature. FRG stands for Function Renormalization Group where Ri corresponds

to the usage of the i-th regulator. CBS stands for Conformal Bootstrap.

can employ the Padé approximants P[3/1] or P[2/2] and indeed obtain a positive value for ω at D = 3.

One can compare the results obtained with the two Padés with the results from other methods in

Tab. 2 and see that they fit quite well, considering the simplicity of the employed extrapolation.

In the chiral Ising model we run into a similar situation when setting N = 1/4 (for fermion

traces we use tr14 = 4). Here the model runs at the non-trivial fixed point into an N = 1 super

symmetric theory, where in the original formulation (in three dimensions) the real scalar boson is

the super partner of a two component Majorana fermion. It turns out that this limit can naively be

reproduced by choosing N = 1/4 up to including three loops, only. That means the SUSY induced

relations like γ∗φ = γ∗ψ = γ∗ and 2ν−1 = D− γ∗ hold only up to this order.

Figure 3: Example diagram in which DREG drops N = 1 SUSY relevant contributions ∼ εi jkεlnm .

Starting at four loops the β -functions become sensitive to the fact that we carry out our Clif-

ford algebra around D = 4 and not D = 3 in which the N = 1 SUSY model is actually realized.

One could also say that the applied DREG breaks SUSY, because it automatically drops SUSY rel-

evant contribution when setting all traces with an odd number of γµ to zero and the SUSY relation

between ν and γ∗ is not fulfilled anymore. In more detail this happens in four loop Yukawa vertex

correction diagrams like depicted in Fig. 3. From a three dimensional realization of the Clifford

algebra represented by the Pauli matrices σi we know that we have a non-vanish contribution from

traces with three γµ because tr(σiσ jσk) ∼ εi jk. In the problematic diagrams the setup of the four

loop momenta is sufficiently “antisymmetric” in order to retain a three dimensional ε-tensor from

each fermion chain. Because any product of two ε-tensors of rank three reduces to a fully anti-

symmetric combination of three Kronecker δ -tensors, we have a non-vanishing contribution to the

amplitude which is set to zero in DREG. Once we take this contribution of the relevant diagrams

into account, for example through a calculation using an explicit SU(2) clifford algebra reduc-

tion including the implementation of Majorana instead of Dirac fermions (this slightly reduces the

number of diagrams, see λ = χM
I in Tab. 1), we restore all SUSY relations at the four loop level.

Numerical results for the critical exponents at D = 3 obtained through en extrapolation with Padés

8
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can be compared to existing results from literature in Tab. 2.

Beside the already mentioned non-trivial checks of the obtained result the agreement with the

large N limit calculations for GN models [16, 17, 18, 19, 20, 21, 22, 23] was ensured. Further, the

Yukawa coupling free terms reproduce the well known results of the φ4 theory at four loops, which

are nowadays text book results (see for e.g. [47]). For a recent progress in φ4 theory at the six loop

level see Ref. [48].

7. Conclusions

We have presented the perturbative determination of the β - and γ-functions for the chiral Ising,

chiral XY and chiral Heisenberg GNY model at the four loop level in D = 4 dimensions. In a first

step we have employed Padé approximants in order to obtain values for anomalous dimensions γ∗ψ
and γ∗φ , the stability exponent ω and correlation length exponent ν for non-trivial IR fixed points

in D = 3 dimensions. The obtained results are compatible with the existing predictions. More

sophisticated extrapolation methods systematically taking into account the asymptotic behavior of

the obtained series could help a lot to improve the extraction of values at D = 3.
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