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1. Introduction

The presence of a single Higgs doublet in the Standard Model of particle physics (SM) implies
that all flavour-changing transitions are determined by the three angles and the one phase that
parameterize the Cabibbo-Kobayashi-Maskawa matrix (CKM) [1, 2]. Rare B, D, and K decays
proceed at loop level via vertices suppressed by small, off-diagonal CKM entries, thus offering
exquisite tests of the Higgs mechanism of electroweak symmetry breaking.

Deviations from SM predictions are usually parameterized in terms of non-standard contri-
butions to various non-renormalizable operators whose intrinsic scale cannot be too far removed
from the electroweak scale in order to produce observable effects. While this usually means that
non-standard contributions to rare decays are associated with new particles that are within the reach
of the LHC, there are some observables (especially involving kaons) that are sensitive to energy
scales that are far beyond current collider capabilities.

During the past two years there has been enormous experimental progress, with ground break-
ing analyses from LHCb, ATLAS, CMS, BaBar, and Belle. The general picture that emerges is an
overall agreement with SM expectations. However, there are several observables for which mea-
surements are in some tension with the SM. Confirmation of these discrepancies would point to
the existence of new massive particles that are possibly within the reach of ATLAS and CMS and
which would very likely introduce novel non-CKM like flavour changing interactions. The most
notable anomalies appear in B→ K(∗)`` and B→ D(∗)`ν decays.

The upcoming high luminosity B-factory Belle II is about to come online, promising important
cross checks of these effects [3]. Moreover, the NA62 [4] and KOTO [5, 6] experiments are also
taking data and will offer precise measurements of the extremely rare kaon decays K+ → π+νν̄

and KL→ π0νν̄ , whose branching ratios can be calculated with an incredible theoretical accuracy.
In the following, we review some of the recent theoretical and experimental progresses that

have been made during the last two years in rare B, D, and K decays.

2. Rare b-hadron decays

Rare flavor-changing neutral current (FCNC) decays of b-hadrons can be described in a model-
independent approach using the effective Hamiltonian

Heff =−
4GF√

2
VtbV ∗tq ∑

i
(CiOi +C′iO

′
i )+h.c., (2.1)

where GF is the Fermi coupling constant and Vtb,tq are the CKM matrix elements with q = d,s
for processes based on the quark level b→ d,s transitions. The heavy degrees of freedom have
been integrated out in the short distance Wilson coefficients Ci, and the operators Oi encode the
long-distance effects. In the SM, the main operators are the electromagnetic operator O7 and the
semileptonic operators O9 and O10. New-physics (NP) contributions could affect the value of the
Wilson coefficients C7,9,10 or involve other operators such as O ′7,9,10 or O

(′)
S,P. The different Oi con-

tribute differently to leptonic, semileptonic, and radiative decays. The next three sections present
the experimental results regarding these channels, while Section 2.4 presents a global analysis of
these measurements in the effective Hamiltonian framework.
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2.1 Leptonic decays

The B0
d → µ+µ− and B0

s → µ+µ− channels are particularly sensitive to NP contributions in
the scalar/pseudoscalar sector and have been searched for for more than 25 years. The results of a
combined analysis of the CMS and LHCb Run 1 data were presented at CKM 2014, revealing the
first observation of the B0

s → µ+µ− decays. The measured branching ratios are compatible with SM
expectations, BR(B0

s → µ+µ−) = (3.65±0.23)×10−9 and BR(B0
d → µ+µ−) = (1.06±0.09)×

10−10 [7], at the 1.2 σ level for the B0
s and 2.2σ for the B0

d decays. The ATLAS collaboration
recently presented the results of its analysis of Run 1 data, BR(B0

s → µ+µ−) = (0.9+1.1
−0.8)× 10−9

and BR(B0 → µ+µ−) < 4.2× 10−10 at 95% confidence level (CL) [8], which are in agreement
with the CMS+LHCb combination. The analysis of the data taken by the LHC experiments during
Run 2 will improve these measurements and start to provide additional observables such as the
ratio of the B0

d and B0
s modes, which is sensitive to Minimal Flavour Violation scenarios, or the

B0
s → µ+µ− effective lifetime, which has different sensitivity to NP models with scalar and non-

scalar contributions.

Searches for leptonic B decays into τ leptons are interesting in view of the recent hints of lep-
ton flavour non-universality obtained by several experiments. Their branching ratios are two orders
of magnitude higher than those for decays into muons because of the less stringent helicity suppres-
sion and the higher lepton mass: BR(B0

s → τ+τ−) = (7.73±0.49)×10−7 and BR(B0
d→ τ+τ−) =

(2.22±0.19)×10−8 [7]. However, experimental searches for these decays are complicated by the
presence of at least two neutrinos in the final state from the τ decays. The LHCb Collaboration
has presented preliminary results corresponding to the first limit on BR(B0

s → τ+τ−), at 3.0×10−3

(95% CL), and the best limit on BR(B0
d → τ+τ−), at 1.3×10−3 (95% CL) [9], obtained using the

hadronic tau decay τ+→ π−π+π−ντ .

2.2 Semileptonic decays

Rare semileptonic decays provide two classes of observables allowing tests of the SM. The
observables in the first one provide tests of lepton flavour universality and are theoretically very
clean. An example is the measurement of the ratio RK = Γ(B+→ K+µ+µ−)/Γ(B+→ K+e+e−),
which was found to be RK = 0.745+0.090

−0.074 ± 0.036 by LHCb in the range 1 < q2 < 6 GeV2/c4

[10], 2.6σ lower than the SM prediction, 1.00±0.01 [11] (q2 is the squared invariant mass of the
dilepton system). A new BaBar analysis performed in the same q2 region confirmed the deficit in
the muonic mode, measuring RK = 0.64+0.39

−0.30±0.06.

The observables in the second class include differential branching ratios and angular distri-
butions. Their theoretical predictions are affected by hadronic uncertainties arising from the form
factors, which are computed using lattice QCD or light cone sum-rule techniques, depending on the
q2 region. An interesting picture emerges from the differential branching ratio measurements for
b→ sµ+µ− decays from the LHCb Collaboration, in which, below the charmonium resonances,
the experimental values tend to be lower than the SM predictions [12, 13, 14, 15], in agreement
with the deficit in the muonic mode seen in RK . The largest effect is seen in the Bs → φ µ+µ−

channel, where the discrepancy is at the level of 3σ .

The angular observables for B→K∗`+`− decays, where `= e,µ , have been studied by several
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Figure 1: The P′5 angular observables in bins of q2. The shaded boxes show the SM prediction taken from
[16]. Left: LHCb results from B0→ K∗0µ+µ− data. Right: Belle results from B(+)→ K∗(+)`+`− data for
electron modes, muon modes, and the combination.

experiments [17, 18, 19, 20]. The differential decay rate can be described by

1
dΓ/dq2 ·

d4Γ[B̄0 +B0]

d cosθ` d cosθK∗ dφ dq2 =
9

32π
∑

i
Si(q2) fi(cosθ`,cosθK∗ ,φ), (2.2)

where θ` is the angle between the negatively charged lepton and the incoming B direction in the
dilepton system center-of-mass frame, θK∗ is the angle between the Kaon and the incoming B
direction in the K-π system center-of-mass frame, φ is the angle between the B`` and BKπ planes
and the observables Si are functions of the Wilson coefficients. Other observables with reduced
sensitivity to the hadronic uncertainties can be formed from the Si, in particular P′5 = S5√

FL(1−FL)
,

where FL is the fraction of longitudinally polarized K∗s.
Using the Run 1 data set of 3 fb−1, the LHCb Collaboration has performed a full angular anal-

ysis of the B0 decay, confirming the tension previously seen with 1 fb−1 between the measurements
of the P′5 observables and SM predictions at low q, as shown in Fig. 1, left [19]. This tension is now
at the 3.4σ level. The Belle Collaboration has used a folding technique to access the same observ-
able, combining the B0 and B+ modes, and reported a tension of 2.6σ in the bin 4< q2 < 8 GeV2/c4

[20]. They also measured for the first time the Qi = Pµ

i −Pe
i variables introduced in [21], which

also provide a test of lepton flavour universality.
The anomalies in RK and P′5, together with the pattern of neutrino mixings, can be simultane-

ously explained by NP in the operators O`
9 and O ′`9 . The NP can be introduced via the Z′ of a U(1)X

symmetry [22]. A model can be constructed that satisfies the constraints from B and K mixing and
rare B decays, as well as from direct searches for pp→ Z′→ µµ at colliders. Direct detection of a
4 TeV Z′ in the µµ channel at the LHC would require several hundred fb−1.

The b→ (s,d)νν̄ transitions are theoretically cleaner than the modes with charged leptons,
as only the Z boson can intervene in the penguin diagram. According to the SM, the predicted
branching ratios span a range from 2.4×10−7 for the π+ mode [23] to 9.2×10−6 for the K∗+ mode
[24]. Searches for these decay channels have been performed by the Belle and BaBar experiments
using full-event reconstruction thanks to hadronic [25, 26] or semileptonic tagging modes [27]. At
this conference, the Belle Collaboration presented new results based on an improved semileptonic
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tagging method leading to the most stringent limits on B0→ K0
s νν̄ , B0→ K∗0νν̄ , B+→ π+νν̄ ,

B0→ π0νν̄ , B+→ ρ+νν̄ and B0→ ρ0νν̄ [28], as seen in Fig. 2. It should be noted that numerous

K+νν̄ K∗+νν̄ K∗0νν̄ π0νν̄π+νν̄KSνν̄ ρ0νν̄ ρ+νν̄

B decay channel

10−5
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Belle hadronic expected

this work expected

SM prediction

BaBar semileptonic

Belle hadronic result
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Figure 2: Expected and observed limits obtained in [28] in comparison to previous results for the BaBar
measurement with semileptonic [27] and hadronic tag [26], as well as the Belle measurement utilizing
hadronic tagging [25]. Theory predictions are from [24]. The processes B→ (π,ρ)νν̄ are suppressed
by |Vtd/Vts|2 with respect to B→ K(∗)νν̄ and have branching ratios below 10−6 [29].

other new results on b→ (s,d)`` transitions have appeared since the last CKM workshop in 2014,
such as the first observation of a b→ d baryonic transition [30], angular analysis of Bs→ φ µ+µ−

[14] and Λb→ Λµ+µ− decays [31], the first search for B+→ K+τ+τ− [32], and many more that
cannot be detailed in this report.

2.3 Radiative decays

The inclusive radiative B̄→ Xs,dγ decays have been the subject of intense studies over the
last few decades. On the theoretical side the dominant contributions to these decays are described
by a local operator product expansion (OPE) known at next-next-to-leading-order [33] (with the
exception of the exact mc dependence of the O1,2-O7 interference [34, 35]). Subdominant cor-
rections appear at the power-suppressed level (∼ ΛQCD/mb) and can be divided into local and
non-local. The former are known through O(αsΛ

2
QCD/m2

b) [36] and O(Λ5
QCD/m5

b) [37], albeit with
poor knowledge of the higher-power matrix elements. The latter lead to resolved photon contribu-
tions in which the photon emission is a long-distance rescattering effect (e.g. b→ scc̄→ sgγ) [38].
Calculations of these effects are under very poor theoretical control and are essentially used to set
an upper limit of about 5% on the their possible size; this is the last single source of uncertainty on
the theoretical prediction for these branching ratios. The current theoretical predictions are [33]:
BR(B̄→ Xsγ)

SM
Eγ>1.6 GeV = (3.36±0.23)×10−4 and BR(B̄→ Xdγ)SM

Eγ>1.6 GeV =
(
1.73+0.12

−0.22

)
×10−5.
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Recently Belle presented an updated measurement using their full 711 fb−1 data set [39]: BR(B̄→
Xsγ)

exp
Eγ>1.6 GeV = (3.12± 0.10stat± 0.19syst± 0.08model)× 10−4. The accuracy of this single mea-

surement is identical to that of the previous world average. The uncertainty on this measurement
is already dominated by systematics, most of which can be reduced by further studies with a larger
data set. A total uncertainty of 3.2% is reachable with 50 ab−1 at Belle II.

The situation is radically different for exclusive modes, where only the magnetic-moment
operator contribution is described in terms of a local OPE, requiring the tensor B→ (K∗,ρ, . . .)
and Bs → (φ , K̄∗, . . .) form factors. Contributions of other operators can be calculated within
the QCD factorization approach up to non-local power corrections. The latter introduce very
sizable uncertainties that can be somewhat reduced by considering ratios and asymmetries like
BR(B→ K∗γ)/BR(Bs→ φγ) and the B→ (K∗,ρ)γ isospin asymmetries, which are predicted with
uncertainties of 23% and 54%, respectively [40]. Other observables, like the time-dependent CP
asymmetry measured in B0, B̄0→ fCPγ are expected to be vanishingly small in the SM due to the
chiral nature of weak interactions and offer sensitive tests of non-standard right-handed currents.
In this context, a result for the time-dependent CP asymmetry in the K0

S ργ final state has been
recently obtained by BaBar [41], resulting in SK0

S ργ
=−0.18±0.32+0.06

−0.05, which is compatible with
the SM expectation (S ∼ 0.02). The time-dependent decay rate of untagged Bs→ φγ is also sen-
sitive to the photon polarization via the coefficient of the sinh term, A∆ [42]. LHCb first measured
this observable, obtaining A∆ = −0.98+0.46

−0.52
+0.23
−0.20 [43], which is consistent with the SM prediction

from [42], A∆ = 0.0047+0.029
−0.025.

2.4 Global analysis of b→ s decays

Global fits to b→ s anomalies involve the combination of several exclusive and inclusive
b→ sγ and b→ s`` transitions: B→ (K∗,Xs)γ (sensitive to C(′)

7 ), Bs→ `` (sensitive to C(′)
10 ), B→

(K,K∗,Xs)``, and Bs → φ`` (sensitive to C(′)
7,9,10). These studies revolve around the experimental

tensions in exclusive b→ s`` decays and depend critically on theoretical systematic uncertainties.
The decays B→ (K,K∗)`` and Bs→ φ`` are described using Soft-Collinear Effective Theory

(SCET) [44, 45] at low q2, where the final-state hadron has large energy, and by a local OPE [46, 47]
at high q2, where the final-state hadron is almost at rest.

At low q2, the leading contributions to the amplitudes are expressed in terms of heavy-to-
light Bq form factors and meson light-cone distribution amplitudes. Unfortunately, there is no
widespread agreement on the actual size of the sub-leading corrections, which are expected to
scale as ΛQCD/mb. For the calculation of branching ratios, it is always possible to use full QCD
form factors, thus confining power corrections to the matrix elements of the operators O1,2 whose
contribution to the total amplitude is subdominant (see for instance the B→K`` analysis presented
in Ref. [48]). The main problem resides in the calculation of asymmetries and ratios (e.g. P′5) for
which the leading dependence on the form factors cancels as long as the form factors themselves
are calculated within SCET; this introduces additional power corrections, about the size of which
there is currently no definite agreement [49, 50, 51, 52]. At high q2, the power corrections are local
and thus under better control. Unfortunately, resonant charmonium contributions (B→ K(∗)ψcc→
K(∗)``) introduce potential violations of quark-hadron duality that are difficult to estimate [53, 54].

The form factors are the most important non-perturbative inputs to these calculations and are
accessible using lattice QCD and Light-Cone QCD Sum Rules (LCSR). Lattice QCD offers a first-
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Figure 3: Global fits of b→ s`` anomalies in the (CNP
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10 ) (left) and (CNP
9µ

,C9e)
NP (right) planes. The

plots are taken from Ref. [49].

principle calculation in which all sources of uncertainty can be systematically taken into account,
but, for technical reasons, allows access to the form factors only at relatively large momentum
transfer (q2). The LCSR approach, on the other hand, requires the final-state mesons to have large
energy, implying small q2. For these reasons it is common to see analyses using lattice QCD at
low recoil and LCSR at high recoil. Recently, very high quality calculations of the three form
factors f+,0,T (q2) for the B→ π [55, 56, 57], Bs→ K [58, 55], and B→ K [59, 60, 61] channels
have been performed. Decays into vector mesons are considerably more complex because there
are seven independent form factors for each channel and the vector mesons undergo strong decays.
A first complete study of B→ K∗ and Bs → (φ ,K∗) was presented in Ref. [62]. Bottom baryon
form factors have been also investigated in the Λb → (p,Λc) [63] and Λb → Λ [31] channels.
Calculations of B→ (K∗,ρ,ω) and Bs→ (φ ,K∗) in the LCSR approach are presented in Ref. [64].

In the two panels of Fig. 3, taken from Ref. [49], we show the results of global fits in the
(CNP

9 ,CNP
10 ) plane assuming lepton flavour universality and in the (CNP

9µ
,CNP

9e ) plane after the inclu-
sion of constraints from RK = BR(B→ Kµµ)/BR(B→ Kee) (see Ref. [11] for a review of the
theoretical uncertainties on RK).

New physics in B→K(∗)`` decays can be tested in the corresponding inclusive mode B→Xs``

for which power corrections are under much better theoretical control (see Ref. [65] for a theoretical
review). Issues related to the calculation of the Xs invariant-mass spectrum, which is relevant in
order to asses the impact of required experimental cuts on mXs , have been studied within a Fermi
motion model [66] and SCET [67, 68]. Current theoretical predictions have uncertainties that
are at the level of the experimental accuracy achievable by Belle II with 50 fb−1 of integrated
luminosity [69].
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3. Rare D decays

Rare decays of D mesons test for NP in FCNC transitions involving up-type quarks. In the
SM, the short-distance contributions are strongly GIM suppressed and long-distance effects are
expected to dominate. This makes it very challenging to disentangle potential NP contributions
from the SM background. Correlations between different measurements can help to discriminate
NP effects.

As an example, in the SM, short-distance physics contributes about 10−18 to BR(D→ µµ),
while the total BR is dominated by the long-distance amplitude mediated by two photons [70].
Specifically, BR(D→ µµ) is expected to be about 2.7× 10−5×BR(D→ γγ), or about 10−13,
with BR(D→ γγ) expected to be ≤ 10−8. In various NP models, BR(D→ µµ) is correlated with
the value of the mixing parameter xD. For example, in theories with heavy vector-like quarks,
FCNC interactions are generated in the left-handed up-quark sector [71], leading to the prediction
BR(D→ µµ)≈ 4.3×10−9xD ≤ 4.3×10−11.

For the D→ γγ decay, the short-distance, EM-penguin contribution to the BR is 3×10−11 [72],
while the long-distance contribution from vector-meson dominance is (1–3) ×10−8 [73]. A NP
contribution from the MSSM (due to gluino exchange via c→ uγ transitions) would give 6×10−6

[74]. The most stringent limit, recently published by Belle, was obtained from D∗+ → D0π+:
BR(D→ γγ) < 8.5× 10−7 (90% CL) [75]. Note that this provides an experimental upper bound
for the expected value of the long-distance SM contribution to BR(D→ µµ).

For D→P`` decays, the GIM suppression is very effective and the SM rates are expected to be
small and dominated by long-distance effects, including production of the ρ/ω and φ resonances,
which contribute to the BR at the level of 10−6. The non-resonant contribution to the BR is at
the level of 10−12 [76, 77]. New physics could contribute to the BR at the level of 10−9 in the
case of heavy vector-like quarks in the up sector, or as much as a few ×10−6 in the case of the
MSSM with R-parity violation. The effects could be obscured by the resonant contribution, but
measurement of the decay spectrum dBR/dq2 could help to isolate NP contributions [76]. BES-
III has recent preliminary results for the decays D+ → K±e+e∓ and D+ → π±e+e∓, obtained
with single-tagged events from ψ(3770) decays. The observation of the lepton-number-violating
decays D+→ K−(π−)e+e+ would indicate the existence of a Majorana neutrino mass term [78].
The limits from BES-III on the BRs for K−e+e+ (6×10−7) and π+e+e− (3×10−7) are the most
stringent obtained to date for these lepton-number-violating and -conserving decays, respectively.
BES-III also presented a new limit on D+→ D0e+νe at this conference: BR < 8.7× 10−5 (90%
CL), obtained via a double-tag technique with the D0 decaying to Kπ , Kππ0, or Kπππ . The
expected BR in the SU(3) limit is 2.78×10−13 [79].

The short-distance contributions for D∗(B∗)→ `` decays [80] are expected to be larger than the
long-distance contributions. Since the SM BRs are on the order of 10−19 they cannot be measured
directly. Various NP models could increase the rate by orders of magnitude. For instance, in the
presence of a flavour-changing Z′ coupling to left-handed quark currents, the BR could be as high
as 2.5×10−11. It may be possible to measure the resonant production of D∗(2007) and subsequent
strong or electromagnetic decay to D0π0 or D0γ in e+e− collisions at

√
s = mD∗ , for example,

at BEPC-II with the BES-III detector, or possibly at VEPP-2000 with an upgrade to increase the
machine energy above 2 GeV.
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D (or B) decays with missing energy could be a dark-matter signature [81]. The D→ νν̄ decay
is helicity suppressed and has an SM BR of 1.1×10−30. Adding a final-state photon overcomes the
helicity suppression, but the SM BR is still 3.96× 10−14. In a minimal scalar dark matter model,
the BR for D→ SS (with S a scalar dark matter particle) could be on the order of 10−14. Belle has
recently published the first limit on BR(D0→ invisible) obtained using the charm-tag method, in
which e+e−→ D(∗)

tagXfragD̄∗−sig , D(∗)
tag and Xfrag are reconstructed from a variety of modes, and the π−

from D̄∗−sig → D̄0π− is reconstructed as well. The result is BR < 8.8×10−5 (90% CL) [82].

4. Rare K decays

The SM calculation of the BRs for the K → πνν̄ decays is particularly clean because the
loop amplitudes are dominated by the top-quark contributions, the hadronic matrix element can
be obtained from the precisely known Ke3 rate, and there are no long-distance contributions from
processes with intermediate photons. In the SM, BR(K+ → π+νν̄) = (8.4± 1.0)× 10−11 and
BR(K0

L → π0νν̄) = (3.4±0.6)×10−11 [83]. The dominant uncertainties are from Vcb, Vub and γ;
the underlying theoretical uncertainties are just 0.30 and 0.05× 10−11, respectively. If both BRs
are measured and one or both is different from its SM value, it may be possible to characterize the
NP responsible (see e.g. [84]).

Seven candidate K+→ π+νν̄ events have been seen by the Brookhaven experiment E787 and
its successor, E949, giving BR(K+ → π+νν̄) = 1.73+1.15

−1.05× 10−10 [85]. The goal of the NA62
experiment [4] is to measure BR(K+→ π+νν̄) with a precision of about 10%. NA62 makes use of
a 750 MHz, 75-GeV positive secondary beam from the CERN SPS, providing 5 MHz of K+ decays
in a 60-m fiducial volume. The full beam rate is tracked through three stations of silicon pixel
detectors, and kaons in the beam are identified by a differential Cerenkov counter. Secondaries are
tracked through four ultra-light straw tube stations operated in vacuum. Precise reconstruction of
the missing mass at the decay vertex provides rejection against the dominant decays K+→ µ+ν and
K+→ π+π0. Photons from π0 are vetoed by EM calorimeters with hermetic coverage for angles
below 50 mrad, including the NA48 liquid-krypton calorimeter (LKr). Muon vetoes and hadron
calorimeters downstream of the LKr provide µ/π separation, while a RICH provides additional
particle identification for secondaries and helps with the precision time measurement needed for
accurate K+-π+ association. NA62 is currently taking data and collected 1012 K+ decays in 2016.
The experiment aims to collect 1013 K+ decays to observe ∼ 100 signal events by the end of 2018.
NA62 can collect several triggers simultaneously to address a broad physics portfolio, and plans to
explore the dark sector in runs after the second long shutdown of the LHC.

The decay K0
L → π0νν̄ has never been observed. Model-independent arguments [86] and the

measured value of BR(K+ → π+νν̄) lead to the Grossman-Nir upper limit BR(K0
L → π0νν̄) <

1.4×10−9. The KOTO experiment at J-PARC (Tokai, Japan) is making steady progress at pushing
down the direct limit. The experiment makes use of a tightly collimated neutral beam (average
momentum 2 GeV) and compact, hermetic detector. From a brief pilot run in 2013, KOTO obtained
the limit BR(K0

L → π0νν̄) < 5.1× 10−8 (90% CL) [6]. The experiment ran for many months in
2015–2016, with various improvements to reduce the background. From the preliminary analysis
of 10% of the data collected in 2015, KOTO has reached a single-event BR sensitivity of 5.9×10−9,
with background levels still under evaluation. With the entire 2015–2016 data set, KOTO should
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be able to push the single-event sensitivity to below the Grossman-Nir bound. By the end of
2015, the beam power reached 42 kW; it is expected to increase to 100 kW by 2018. A series
of upgrades to the experiment are also in progress, including an additional layer for the barrel
calorimeter (tested in 2016) and front/back readout for the forward CsI calorimeter to provide
additional neutron rejection. The experiment expects to reach single-event sensitivity at the level
of the SM BR by about 2021.

Numerous other rare kaon decays are of interest besides K → πνν̄ . Since the CP-violating
phase of the s→ d`+`− transition is poorly determined, there is room for NP to manifest itself
in K → π`+`− and K → `+`− decays, although there are complications from the long-distance
contributions [87]. For example, KL→ µ+µ− is dominated by the long-distance component aris-
ing via KL→ γγ . On the other hand, about one-third of the KS→ µ+µ− width (BR ∼ 5×10−12)
is from the CP-violating short-distance amplitude [88]. The recent limit from LHCb, BR(KS →
µ+µ−) < 5.8× 10−9 (90% CL) [89], demonstrates LHCb’s capability to measure KS decays to
muons. LHCb may also be able to measure BR(KS→ π0µ+µ−), which helps to isolate the short-
distance component of KL → π0µ+µ− by pinning down the contribution from indirect CP vio-
lation. The K+ → π+`+`− decays may show signs of lepton-flavour universality violation, in
analogy to the RK and P′5 anomalies observed in the B system. NA62 may have the statistics to con-
siderably improve on NA48/2 results for the form-factor slopes for these decays. High-statistics
measurements of the Dalitz plots for the K→ ππγ and K→ ππee decays would allow the inner-
bremsstrahlung and direct-emission contributions to be isolated, enabling searches for CP-violating
amplitudes in the latter case. Finally, NA62 and other experiments measuring π± and K± decays
could also look for time-dependent anisotropies in the lepton momentum distribution in Pµ2, which
would be observable if Lorentz invariance were violated and the fundamental symmetry group were
instead the SIM(2) subgroup, implying the existence of a preferred direction in spacetime [90].

5. Charged lepton flavour violation

In the SM, charged lepton flavour violating decays are highly suppressed due to the smallness
of neutrino masses. The observation of such a decay would therefore be an unambiguous sign of
physics beyond the SM.

Lepton flavour violating decays of muons are searched for at dedicated facilities. The MEG
experiment at PSI has improved the limit on the µ+ → e+γ decay by a factor 30 with respect to
the previous experiment using their final data set: BR(µ+→ e+γ)< 4.2×10−13 at 90% CL [91].
The experiment has been upgraded to reach a sensitivity of 4× 10−14 and will have a first engi-
neering run in 2017. The µ+→ e+e−e+ decay has been searched for previously by the SINDRUM
experiment reaching, 1.0× 10−12. The Mu3e experiment at PSI aims at reaching a sensitivity of
10−15 as a first step in 2018–2020, and 10−16 in a second step. Muon-to-electron conversion will
be searched for by COMET at J-PARC and Mu2e at Fermilab. They both expect to reach a single
event sensitivity of ∼ 2×10−17 using aluminium targets in the years 2020.

Lepton flavour violation is also searched for in τ and B decays at the B factories and LHC
experiments. A few new results have appeared in the last couple of years. The majority of the
limits for τ decays are dominated by the Belle collaboration, reaching limits in the range 10−8 to
2×10−7, except for τ+→ e+/µ+γ , where BaBar has the most stringent limits, and τ → pµ+µ−,
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which has only been searched for by LHCb. Regarding the B decays, BaBar has obtained the best
limits in most cases, spanning a range from a few ×10−8 for the e and µ channels to a few ×10−5

for channels involving τ leptons. LHCb has obtained the best limits for the B0→ e±µ∓ channel,
reaching a limit at 2.8×10−9 (90% CL) with 1 fb−1 of Run 1 data. For a complete picture of τ and
B LFV results, see Ref. [92].

6. Summary

While generally speaking, present results on rare B decays are in agreement with SM predic-
tions, measurements of some observables, notably RK and P′5, show intriguing hints of significant
deviation. It is very encouraging to see the excellent reach of LHCb with only Run 1 data, as well
as the improvements in the results from the B-factory experiments, which are continuously refining
their analysis techniques to obtain more sensitive tests of the SM. This year’s CKM conference has
also seen the first results on rare B decays to τ leptons, which are interesting in view of the hints
of lepton flavour universality violation in decays to muons. Within the next few years, new results
from LHCb, ATLAS, and CMS Run 2 data will be supplemented by the arrival of the first results
from Belle II and from the kaon experiments KOTO and NA62, as well as by results from the next
generation of charged lepton flavour violation experiments. The prospects are therefore excellent
for rare decays to continue to place new and increasingly tight constraints on the Standard Model.
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