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1. Introduction

With |Vud |= 0.97417(21) [1], three-family-unitary implies|Vus|= 0.2258(9). DirectKℓ3 and
Γ[Kµ2]/Γ[πµ2] determinations, using recent 2014 FlaviaNet experimentalresults [2] and 2016 lat-
tice input [3], yield results|Vus| = 0.2231(9) and 0.2253(7), respectively, compatible with this
expectation. The most recent update of the conventional implementation of the FB FESR hadronic
τ decay approach [4], in contrast, yields the 3.6σ low result|Vus|= 0.2176(21) [5].

In the Standard Model (SM), denoting the differential distributions for flavori j = ud, us,
vector (V) or axial-vector (A) current-mediated decays bydRV/A;i j/ds, whereRV/A;i j ≡ Γ[τ− →

ντ hadronsV/A;i j (γ)]/Γ[τ− → ντ e−ν̄e(γ)], one has, withρ (J)
V/A;i j the spectral function of the scalar

polarization,Π(J)
V/A;i j, of the corresponding current-current 2-point function [6]

dRV/A;i j

ds
=

12π2|Vi j|
2SEW

m2
τ

(1− yτ)
2 ρ̃(s) , (1.1)

with yτ = s/m2
τ , ρ̃(s) = (1+2yτ )ρ

(1)
V/A;i j(s)+ρ (0)

V/A;i j(s), SEW a known short-distance electroweak
correction, andVi j the flavori j CKM matrix element. Rewritten in terms of kinematic-singularity-

free combinations, the dominantρ (0+1)
V/A;i j term appears multiplied by the “kinematic weight”wτ(y) =

(1−y)2(1+2y). The non-chirally-suppressedπ andK pole contributions dominateρ (0)
A;ud,us(s). The

remaining, doubly-chirally-suppressed continuumJ = 0 contributions are negligible fori j = ud.
For i j = us, they are small and can be estimated using the relatedi j = us scalar and pseudoscalar
sum rules [7, 8]. The experimentaldRV/A;i j/ds distributions then yieldρ (0+1)

V/A;ud,us(s).

The inclusiveτ |Vus| determination employs FESRs for the FB difference∆Π ≡ Π(0+1)
V+A;ud −

Π(0+1)
V+A;us, and associated spectral function,∆ρ ≡ ρ (0+1)

V+A;ud − ρ (0+1)
V+A;us [4]. Generically,

∫ s0

0
w(s)∆ρ(s)ds = −

1
2πi

∮

|s|=s0

w(s)∆Π(s)ds , (1.2)

valid for anys0 > 0 and any analyticw(s). For large enoughs0, the OPE is to be employed on the
RHS. On the LHS, for generalw, subtractingJ = 0 contributions yields theJ = 0+ 1 analogue,
dR(0+1)

V/A;i j/ds, of dRV/A;i j/ds. Defining the re-weighted integrals

Rw
V+A;i j(s0)≡

∫ s0

0
ds

w(s)
wτ(s)

dR(0+1)
V+A;i j(s)

ds
, (1.3)

Eq. (1.2) can be used to replace the FB differenceδRw
V+A(s0) ≡

Rw
V+A;ud(s0)

|Vud|2
−

Rw
V+A;us(s0)

|Vus|2
with its OPE

representation, yielding [4],

|Vus|=

√

Rw
V+A;us(s0)/

[

Rw
V+A;ud(s0)

|Vud |2
−δRw,OPE

V+A (s0)

]

. (1.4)

This result should bes0- andw-independence, providing self-consistency tests.
The> 3σ low |Vus| results noted above are produced by a conventional implementation of

Eq. (1.4) [4] usings0 = m2
τ and w = wτ only. This choice allows the spectral integrals to be
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obtained from the inclusive non-strange and strange branching fractions, but precludess0- andw-
independence tests. Sincewτ has degree 3,δRwτ ,OPE

V+A (s0) has OPE contributions up to dimension
D = 8. D = 2 and 4 contributions, involving onlyαs and the quark masses and condensates [3, 9,
10, 11], are known. Experimentally unknownD = 6 condensates are estimated using the vacuum
saturation approximation (VSA), andD = 8 contributions neglected [4, 12]. This treatment of
D= 6 and 8 contributions (especially the use of the VSA) is knownto be potentially dangerous [13].
The slow convergence of theD = 2 OPE series which, to 4-loops, has the form [9]

3
2π2

m̄s

Q2

[

1+
7
3

ā+19.93ā2+208.75ā3
]

, (1.5)

with ā = αs(Q2)/π, andm̄s = ms(Q2), αs(Q2) the runningMS strange mass and coupling, is also
potentially problematic, given that ¯a(m2

τ)≃ 0.1.

Figure 1: |Vus| from thewτ andŵ FESRs,
with conventional implementation OPE as-
sumptions as input.
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Figure 2: |Vus| from the conven-
tional (solid lines) and new implementa-
tions (dashed lines) of thewN FESRs.
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Conventional implementationD > 4 assumptions are testable by comparingwτ(y) = 1−3y2+

2y2 andŵ(y) = 1−3y+3y2−y3 (y = s/s0) |Vus| results. IntegratedD = 6 and 8 OPE contributions
for ŵ are−1 and−1/2 times, respectively, those forwτ . Small D = 6 and negligibleD = 8
contributions forwτ thus require smallD > 4 contributions for ˆw. The two FESRS should produce
compatible,s0-stable|Vus| results. A breakdown of theseD > 4 assumptions would, in contrast,
produces0-instabilities of opposite sign for the two FESRs and an output |Vus| difference decreasing
with increasings0. The results of this comparison, shown in Fig. 1, obviously support scenario two.

TheD = 2 convergence issue was investigated by comparing OPE expectations ton f = 2+1
RBC/UKQCD lattice results for∆Π(Q2) [14]. An excellent match ofD = 2+ 4 OPE to lattice
results was observed in the broad high-Q2 interval 4GeV 2 <Q2 < 10GeV 2 when 3-loop truncation
and a fixed- (rather than local-) scale treatment of logarithmic contributions were employed for the
D = 2 series [15].1 ConventionalD = 2+4 OPE error estimates were also found to be extremely

1The fixed- and local-scale treatments are the analogues of the “fixed-order” (FOPT) and “contour-improved”
(CIPT) FESRD = 2 series prescriptions.
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conservative [15]. Much larger deviations of theD = 2+4 OPE sum from the lattice data were also
seen belowQ2 ∼ 4 GeV 2 than conventional implementationD > 4 assumptions would imply [15].

2. A new FB FESR implementation

The above observations suggest an alternate FB FESR implementation in which the 3-loop-
truncated FOPT version ofD= 2 OPE contributions favored by lattice data is used and the effective
D > 4 OPE condensates,CD, are fit to data [15]. FESRs based on the weights

wN(y) = 1−
N

N −1
y+

1
N −1

yN , (2.1)

are convenient as they involve only a single unknownD = 2N+2> 4 OPE contribution. The 1/sN
0

scaling of this contribution allows both|Vus| andC2N+2 to be obtained from thewN FESR fit.
We determine the weighted non-strange and strange spectralintegrals as follows.K andπ pole

contributions are evaluated usingKµ2, πµ2 and SM expectations, and continuumud contributions
using the ALEPHud V+A distribution [16]. Continuumus V+A contributions are obtained by
summing over exclusive modes, with Belle [17] and BaBar [18,19] results used for thēK0π− and
K−π0 distributions, BaBar [20] and Belle [21] results for theK−π+π− andK̄0π−π0 distributions,
and 1999 ALEPH results [22] for the combined distribution ofexclusiveus modes not re-studied
at the B-factories. We consider two different possibilities for theK−π0ντ branching fraction which
normalizes the exclusiveK−π0 distribution: 0.00433(15) from the 2014 HFAG summer fit [23]
(dominated by BaBar), and 0.00500(14) from a preliminary BaBar thesis update [19]. Central
results below correspond to the latter choice, which is favored by BaBar.

Figure 2 shows results for|Vus| obtained from thew2,3,4 FESRs. The solid lines result from
conventional implementation OPE assumptions/input, the dashed lines from analyses using instead
as input the central effectiveD > 4 condensate values from the new-implementationwN FESR
fits. The switch to fittedCD>4 input is seen to completely cure thes0- and w-instablilities of
the conventional implementation approach. With the different wN FESRs yielding|Vus| in good
agreement, we base our final result on a combined 3-weight fit.Normalizing the exclusiveK−π0

distribution with the favored preliminary BaBar branchingfraction, we find [15]

|Vus| = 0.2229(22)exp(4)th . (2.2)

The theory error is dominated by the uncertainty in〈mss̄s〉, the experimental error by the errors and
covariances of the strange exclusive distributions [15]. The result agrees well with that fromKℓ3,
and, within errors, with 3-family unitarity expectations.2 Roughly half of this improved agreement
results from the data-based treatment of higherD OPE contributions, and half from the use of
the new preliminary BaBarK−π0ντ branching fraction. The curing of thes0- and w-instability
problem, however, results entirely from the data-basedD > 4 OPE treatment.

Significant reductions in the|Vus| error are possible through improvements to the low-multiplicity
strange exclusive branching fractions [15]. The∼ 25% uncertainties in the weighted spectral in-
tegrals of the combined, higher-multiplicity 1999 ALEPH “residual mode” distribution, however,

2Normalizing theK−π0 distribution using the HFAG 2014 branching fraction, yields |Vus| = 0.2204(23)exp(4)th,
0.0024 higher than the conventional implementation result obtained from the same experimental input.
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Table 1: RelativewN -weightedus spectral integral contributions in thes0 fit window of the alternate FB
FESR implementation.s0 is in GeV 2. Kπ column entries are the sum of theK−π0 andK̄0π− contributions,
Kππ column entries the sum of theK−π+π− andK̄0π−π0 contributions, andResidual column entries the
contributions of the residual mode part of the 1999 ALEPH distribution.

Weight s0 K Kπ Kππ Residual

w2 2.15 0.496 0.426 0.062 0.017
3.15 0.360 0.414 0.162 0.065

w3 2.15 0.461 0.446 0.073 0.019
3.15 0.331 0.415 0.182 0.074

w4 2.15 0.441 0.456 0.082 0.021
3.15 0.314 0.411 0.194 0.081

represent an important limiting factor. A competitive|Vus| determination requires sub-0.5% preci-
sion, hence weighted inclusiveus spectral integrals with sub-% precision. The relative contribu-
tions of the lower-multiplicity exclusive modes and residual mode sum to the inclusivew2-, w3-
and w4-weightedus spectral integrals are shown in Table 1, at the lowest and highests0 in the
analysis fit window. The∼ 25% residual mode error corresponds to∼ 2% inclusiveus spectral
integral errors at the lower end of this window. A factor of> 2 improvement in the residual mode
sum distribution errors would thus be needed to make the FB FESR approach fully competitive.

It is possible to circumvent this limitation by switching toa dispersive analysis using inclu-
sive us data and weights designed to allow lattice data, rather thanthe OPE, to be used as theory
input [15, 24]. Explicitly, one starts from|Vus|

2 ρ̃(s), obtained from the experimentaldRus;V+A/ds
distribution via Eq. (1.1).ρ̃(s) is the spectral function of the kinematic-singularity-free us V+A
polarization combination,̃Πus;V+A(Q2), with Q2 = −s and

Π̃us;V+A(Q
2)≡

(

1−2
Q2

m2
τ

)

Π(J=1)
us;V+A(Q

2)+Π(J=0)
us;V+A(Q

2) . (2.3)

Choosing weights,̄WN(s) = 1/
[

∏N
k=1(s+Q2

k)
]

, with poles at theN distinct Euclidean locations
Q2 = Q2

1, · · · Q2
N , Q2

k > 0, one has, forN ≥ 3, the convergent, unsubtracted dispersion relation

∫ ∞

0
dsW̄N(s) ρ̃us;V+A(s) =

N

∑
k=1

Π̃us;V+A(Q2
k)

∏ j 6=k

(

Q2
j −Q2

k

) . (2.4)

TheΠ̃us;V+A(Q2
k) on the RHS of this relation can be determined with good accuracy on the lattice

if all Q2
k are kept to a few to several tenths of aGeV 2 [24]. Thes ≤ m2

τ contribution to the LHS is
determinable from experimentaldRus;V+A/ds data, up to the unknown factor|Vus|

2. Keeping allQ2
k

below∼ 1 GeV 2, and choosing the number of poles,N, large enough allows one to also suppress
spectral integral contributions from the regions > m2

τ (where data do not exist and pQCD is used
for ρ̃(s)), and that part of the kinematically allowed regions < m2

τ whereus data errors are large.
IncreasingN, improves this suppression, at the cost of an increase in theerrors on the lattice side
(the level of cancellation in the sum of residues grows with increasingN). The error on|Vus| is to be
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minimized by optimizing the choice ofN and theQ2
k, subject to these two competing constraints.

Space limitations preclude a discussion of the preliminaryresults from this approach presented at
the conference. A paper containing the final results is in preparation [24].
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