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The rare decay B→ K∗`+`− is an important mode for indirect search of new physics (NP) due
to the measurement of large number of observables in experiments. Using the most general para-
metric form of the amplitude in the standard model (SM), we probe the physics beyond standard
model in a theoretically clean approach. The model independent framework has been imple-
mented in the maximum q2 limit to highlight strong evidence of right-handed currents, which
are absent in the SM. The conclusions derived are free from hadronic corrections. Our approach
differs from other approaches that probe new physics at low q2 as it does not require estimates of
hadronic parameters but relies instead on heavy quark symmetries that are reliable at the maxi-
mum q2 kinematic endpoint.
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1. Introduction

The rare decay B→ K∗`+`− involves a b→ s flavor changing loop induced transition and
hence are very suppressed in the standard model (SM). The rich angular analysis of this mode
leads us to measure plethora of observables at experiments and thus currently is of great interest to
both theory as well as experimental groups. To probe new physics (NP) in this mode, one has to
be certain about all possible contributions within the SM and hence requires for clean approaches
i.e., those have reduced dependency on hadronic uncertainties. In this note, we briefly discuss the
results obtained in our recent studies on this mode and refer the reader to Refs. [1, 2, 3] for detailed
description.

2. Right handed current analysis

In this section first we briefly discuss the theoretical framework adopted to comprehensively
consider almost all possible contributions within the SM for the decay B→ K∗`+`− and then use
the model independent framework to look for a possible new physics (NP) scenario i.e., right
handed (RH) currents. We start with the observables as defined in Ref. [1] to be the well known
longitudinal helicity fraction FL and three observables F⊥, A5, AFB which are related to the CP
averaged observables S3, S5, ALHCb

FB measured by LHCb [4] as follows:

F⊥ =
1−FL +2S3

2
, A5 =

3
4

S5, AFB=−ALHCb
FB . (2.1)

The observables are functions of transversity amplitudes and in the massless lepton limit the decay
is described by six transversity amplitudes which can be written in the most general form as [1],

A L,R
λ

=
(
C̃λ

9 ∓C10)Fλ − G̃λ . (2.2)

This parametric form of SM amplitude includes all short-distance and long-distance effects, factor-
izable and non-factorizable contributions and resonance contributions. In Eq. (2.2), C9 and C10 are
Wilson coefficients with C̃λ

9 being the redefined “effective” Wilson coefficient defined [1] as

C̃λ

9 =C9 +∆C(fac)
9 (q2)+∆Cλ ,(non-fac)

9 (q2), (2.3)

where ∆C(fac)
9 (q2), ∆Cλ ,(non-fac)

9 (q2) correspond to factorizable and soft gluon non-factorizable con-
tributions. Fλ and G̃λ are the form factors for the decay mode. The RH current operators O′9 and
O′10, with respective couplings C′9 and C′10, modify the amplitudes as follows

A L,R
⊥ =

(
(C̃⊥9 +C′9)∓ (C10 +C′10)

)
F⊥− G̃⊥, A L,R

‖,0 =
(
(C̃‖,09 −C′9)∓ (C10−C′10)

)
F‖,0− G̃‖,0 (2.4)

With the introduction of notation: rλ = Re(G̃λ )/Fλ −Re(C̃λ

9), ξ =C′10/C10, and ξ ′ =C′9/C10, we
construct the following variables,

R⊥ =

(
r⊥
C10
−ξ

′
)/

(1+ξ ) , R‖,0 =
(

r‖,0
C10

+ξ
′
)/

(1−ξ ) . (2.5)

At low recoil energy of K∗ meson, only three independent form factors describe the whole
B→ K∗`+`− decay and there exist a relation among the form factors at leading order in 1/mB
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expansion given by [5, 6], G̃‖/F‖ = G̃⊥/F⊥ = G̃0/F0 =−κ 2mbmBC7/q2, where κ ≈ 1. Hence at
the maximum point in q2 i.e., the kinematic endpoint q2

max, one defines r such that r0 = r‖ = r⊥ ≡ r.
Therefore Eq. (2.5) implies that in the presence of RH currents one should expect R0 = R‖ 6= R⊥
at q2 = q2

max without any approximation. Interestingly, this relation is unaltered by non-factorizable
and resonance contributions [7] at this kinematic endpoint. To test the relation among Rλ ’s in light
of LHCb data, first defining δ ≡ q2

max−q2, we expand the observables FL, F⊥, AFB and A5 around
q2

max as follows:

FL =
1
3
+F(1)

L δ +F(2)
L δ

2 +F(3)
L δ

3, F⊥ = F(1)
⊥ δ +F(2)

⊥ δ
2 +F(3)

⊥ δ
3,

AFB = A(1)
FBδ

1/2 +A(2)
FBδ

3/2 +A(3)
FBδ

5/2, A5 = A(1)
5 δ

1/2 +A(2)
5 δ

3/2 +A(3)
5 δ

5/2. (2.6)

The zeroth order coefficients of the observable expansions are assumed from the constraints arising
from Lorentz invariance and decay kinematics derived in Ref. [7], whereas all the higher order
coefficients are extracted by fitting the polynomials with 14 bin LHCb data as shown in Fig. 1.
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Figure 1: An analytic fit to 14-bin LHCb data using Taylor expansion at q2
max for the observables FL, F⊥, AFB

and A5 are shown as the brown curves. The±1σ error bands are indicated by the light brown shaded regions,
derived including correlation among all observables. The points with the black error bars are LHCb 14-bin
measurements [4].

The limiting analytic expressions for Rλ at q2 = q2
max are

R⊥(q2
max) =

ω2−ω1

ω2
√

ω1−1
, R‖(q

2
max) =

√
ω1−1

ω2−1
= R0(q2

max) (2.7)

where ω1 = 3F(1)
⊥ /2A(1)2

FB and ω2 = 4
(

2A(2)
5 −A(2)

FB

)/
3A(1)

FB

(
3F(1)

L +F(1)
⊥

)
. (2.8)

It can be seen that ω1, ω2 contain coefficients which are extracted completely from data and
their estimates using LHCb measurements are: ω1 = 1.10±0.30 (1.03±0.34) and ω2 =−4.19±
10.48 (−4.04±10.12), where the first values are determined using A(1)

FB and the values in the round
brackets use 2A(1)

5 . The variables Rλ ’s can be estimated using data only and the allowed region is
shown in gray bands in Fig. 2 left panel. A significant deviation is seen from a slope of 45o line
(red line) which denotes R⊥ = R‖ = R0 and thus hints toward the presence of RH currents without
using any estimate of hadronic contributions. To quantify the RH couplings, we use Eq. (2.5) and
the results are shown in the last two panels of Fig. 2. The middle panel uses the SM estimate of
parameter r/C10 [6] and the SM prediction for C′10/C10 and C′9/C10 (the origin) is at more than
5σ confidence level. We have performed another analysis where the input r/C10 is considered as
nuisance parameter and the result is shown in the right most panel of Fig. 2. It can be seen that the
uncertainties in fitted parameters C′10/C10 and C′9/C10 have increased due to the variation of r/C10

and the SM prediction still remains on a 3σ level contour providing evidence of RH currents.
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Figure 2: (left panel) Allowed regions in R⊥ – R‖,0 plane are shown in light and dark gray bands at 1σ and
5σ confidence level, respectively. The red straight line corresponds to the case R⊥ = R‖,0 i.e. the absence
of RH couplings. (middle panel) In C′10/C10 – C′9/C10 plane, the yellow, orange and red regions correspond
to 1σ , 3σ and 5σ significance level, respectively, where SM input for r/C10 [6] is used. The best fit values
of C′10/C10 and C′9/C10, with ±1σ errors are −0.63± 0.43 and −0.92± 0.10, respectively. (right panel)
Same color code as the middle panel figure. The input r/C10 is varied as a nuisance parameter and hence the
obtained uncertainties in C′10/C10 and C′9/C10 are increased. The SM predictions for all the three plots are
indicated by the stars. Strong evidence of RH current is pronounced from the plots.

3. Some sanity checks

3.1 Resonance effects

Resonances can alter the results that are obtained using a polynomial fit to the observables
in Eq. (2.6), where it is assumed that resonances are absent. To study the systematics due to reso-
nances, we assume observables calculated using theoretical estimates of form factors (LCSR [8] for
q2 ≤ 15GeV2 and Lattice QCD [9] for q2 ≥ 15GeV2 region) and Wilson coefficients. Following the
parametrization from Ref. [10], we include the J/ψ (1S), ψ(2S), ψ(3770), ψ(4040), ψ(4160) and
ψ(4415) resonances in our study. The procedure uses the function g(mc,q2), in Wilson coefficient
Ceff

9 , which includes the cross-section ratio Rcc̄
had(q

2) = Rcc̄
cont(q

2)+Rcc̄
res(q

2), where the resonance
effects are incorporated as

Rcc̄
res(q

2)=Nr ∑
V=J/ψ ,ψ ′..

9q2

α

Br(V → `+`−)ΓV
totΓ

V
had

(q2−m2
V )

2 +m2
V ΓV 2

tot
eiδV . (3.1)

Here ΓV
tot is the total width of the vector meson ‘V ’, δV is an arbitrary relative strong phase as-

sociated with each of the resonances and Nr is a normalization factor that fixes the size of the
resonance contributions compared to the non-resonant background. A random simulation has been
done by varying each resonance phases δV and a sample of plots for different observables are given
in link [11] as movies. It can be seen from the plots that when resonances are included, AFB and
A5 always decrease in magnitude for the 15GeV2 ≤ q2 ≤ 19GeV2 region. Hence if the effect of
resonances could somehow be removed from the data, the values of AFB and A5 would be larger in
magnitude which in turn will decrease the value of observable ω1 compared to the values obtained
from fits to experimental data in which resonances are automatically present. As the current ob-
tained values of ω1 from data are already close to unity, any further reduction will force ω1 into the
un-physical domain and increase the significance of deviation from the SM.
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3.2 Polynomial fit convergence

In this section, we study the systematics of the fits to coefficients A(1)
FB , A(2)

FB , F(1)
L , A(1)

5 , A(2)
5

and F(1)
⊥ , which appear in the expressions of ω1 and ω2 given in Eq. (2.8). By varying the order

of the polynomial fitted, from 2 to 4, and also the number of bins from the last 4 to 14 bins, each
extracted coefficients are shown in Fig. 3. We find that all the fitted coefficients show a good degree
of convergence even when larger number of bins are added. The values obtained for the coefficients
are consistent within ±1σ regions apart from some small mismatches in F(1)

⊥ and A(1)
5 . We choose

as a benchmark the third order polynomial fit to all 14 bins and to validate this choice, we also
perform an identical fit for observables generated using form factor values [8, 9] and the results are
shown in Fig. 4. The fits to SM observables are satisfactory for the entire q2 region.
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Figure 3: Systematic study of the coefficients of observables with the variation of polynomial order and the
number of bins used for the fit. The color code for the different orders of the fitted polynomial is depicted
in the panel. The x-axis denotes the number of bins used for the fit from last 4 to 14 bins. Coefficient values
show good convergence within the±1σ error bars except for few bins in the F(1)

⊥ and A(1)
5 distributions. The

4-bin order 4 polynomial fit shows disagreement which is expected.
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Figure 4: Fits with third order polynomials to the theoretical SM observables, generated using LCSR form
factors for q2 ≤ 15GeV2 [8] and Lattice QCD form factors for q2 ≥ 15GeV2 [9]. The blue error bars are bin
integrated SM estimates and the solid blue curve with the shaded region represents the best fit polynomial
with ±1σ errors. The fits nicely explain the SM observables including the zero-crossing of asymmetries
AFB and A5.
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4. Summary

• A formalism has been developed to incorporate almost all possible effects within the SM. The
approach we have adopted in our work differs from the other approaches [12] in literature as
we have no or minimal dependency on hadronic uncertainties.

• A strong evidence of RH currents is found where the conclusions are derived at endpoint
limit.

• The detailed study of resonance effects strengthen the conclusion derived here.

• A systematic study, by varying the polynomial order (Eq. (2.6)) and the number of bins used
to fit the polynomials, shows a very good convergence for fit coefficients.

• The finite width effect of K∗ meson has also been considered where the position of the
kinematic endpoint q2

max is varied over a range considering width of K∗ ∼ 50MeV. Using
a weighted average over the Breit-Wigner shape for K∗ meson, the ω1 and ω2 values are
found well within the ±1σ uncertainties of the results obtained without the width effect.

• We conclude that there is a need for more data from experiments to confirm the presence of
the NP scenario presented here.
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