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must control the penguin contributions to the decay amplitudes, which affect the extraction of

fundamental CP phases from the measured CP asymmetries. Although the “penguin pollution”

is doubly Cabibbo-suppressed, it could compete in size with current experimental errors. In this

talk I present a calculation of the penguin contributions treating QCD effects with soft-collinear

factorisation and compare method and results with the alternative approach employing flavour-

SU(3) symmetry. As a novel feature, I present results for the penguin pollution in b → ccd modes.
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Figure 1: Box diagrams describing Bd−Bd and Bs−Bs mixing in the Standard Model.

1. Introduction

In this talk I discuss time-dependent CP asymmetries

A
Bq→ f

CP (t)≡ Γ(Bq(t)→ f )−Γ(Bq(t)→ f )

Γ(Bq(t)→ f )+Γ(Bq(t)→ f )
, q = d or s, (1.1)

for Bd,s decays into final states f consisting of a charmonium and a light pseudoscalar or vector

boson. Prime examples are the decays Bd → J/ψKS and Bs → J/ψφ , which are both triggered by

the quark decay b → ccs. I only consider the case that f is a CP eigenstate; if f comprises two

vector mesons (as in Bs → J/ψφ ) it is understood that the CP-even and CP-odd components are

properly separated through an angular analysis. Precise measurements of these mixing-induced CP

asymmetries serve to determine the CP phases related to the Bd−Bd and Bs−Bs mixing amplitudes.

Within the Standard Model these are

2β ≡ arg

(
VtbV ∗

td

VcbV ∗
cd

)2

and 2βs ≡ arg

(
V ∗

tbVts

V ∗
cbVcs

)2

. (1.2)

Here (VtbV ∗
tq)

2 stems from the box diagrams shown in Fig. 1. The Bq−Bq mixing amplitudes

probe virtual effects of new particles with masses as high as 100TeV, if new physics enters Bq−Bq

mixing at tree level. It is therefore of utmost importance to control the theoretical uncertainties

in the relation between the measured A
Bq→ f

CP (t) and the fundamental CP phases in Eq. (1.2) as

precisely as possible.

The CP asymmetry in Eq. (1.1) reads

A
Bq→ f

CP (t) =
S f sin(∆mqt)−C f cos(∆mqt)

cosh(∆Γqt/2)+A f ,∆Γq
sinh(∆Γqt/2)

. (1.3)

Here ∆mq and ∆Γq are the mass and width difference, respectively, between the mass eigenstates of

the Bq−Bq system. ∆mq and ∆Γq are CP-conserving quantities calculated from the box diagrams

in Fig. 1. In Bd decays we can set the denominator in Eq. (1.3) to 1, because ∆Γd is very small.

The coefficients S f , C f , and A f ,∆Γq
depend on the decay amplitude A(Bq → f ). For the b → ccs

amplitudes of interest one usually writes:

A(Bq → f ) =V ∗
cbVcsTf +V ∗

ubVusPf . (1.4)

The “tree” and “penguin” amplitudes read

Tf =
GF√

2
〈 f |C1Qc

1 +C2Qc
2 +∑

j

C jQ j|Bq〉, (1.5)
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Pf =
GF√

2
〈 f |C1Qu

1 +C2Qu
2 +∑

j

C jQ j|Bq〉. (1.6)

Here GF is the Fermi constant and Q
q
1 = qαγµ(1 − γ5)s

β bβ γµ(1 − γ5)q
α and Q

q
2 = qαγµ(1 −

γ5)s
αbβ γµ(1− γ5)q

β are the current-current operators generated by W -boson exchange. The sum

over j comprises the penguin operators Q3−6 and the chromomagnetic operator Q8G (see Ref. [1]

for the definitions). The Ck’s are the Wilson coefficients which encode the short-distance physics;

the top-quark penguin loops (entering C3−6 and C8G) appear in both Tf and Pf , because the CKM

unitarity relation V ∗
tbVts =−V ∗

cbVcs −V ∗
ubVus is used to eliminate V ∗

tbVts from Eq. (1.6). Expanding to

first order in ε = |VusVub/(VcsVcb)| ≈ 0.02 one has

S f ≃−η f sin(φq +∆φq) with tan(∆φq)≃ 2ε sinγ Re
Pf

Tf

, (1.7)

where CP| f 〉=η f | f 〉 with η f =±1, φd = 2β , and φs =−2βs. Furthermore, C f ≃ 2ε sinγ Im(Pf /Tf )

quantifies direct CP violation.

∆φq in Eq. (1.7) is the penguin pollution which obscures a clean extraction of φq from the

measured S f . The size of the penguin pollution depends on the considered decay mode through

Re(Pf /Tf ) in Eq. (1.7). A standard way to estimate ∆φq employs the flavour-SU(3) symmetry of

QCD or its SU(2) subgroup U-spin. The latter connects pairs of hadronic matrix elements related by

the interchange of down and strange quarks. In the case of Bd → J/ψKS one can extract the desired

Pf /Tf from control channels such as Bs → J/ψKS or Bd → J/ψπ0, which are induced by the quark

decay b → ccd. In these control channels the CKM factor ε is replaced by |VudVub/(VcdVcb)| ≈ 0.38

which permits to determine Pf /Tf from the coefficients C f and S f measured in these modes. In

this way one finds the values −3.9◦ ≤ ∆φd ≤ −0.8◦ [2], |∆φd| ≤ 1.6◦ [3], |∆φd| ≤ 0.8◦ [4], and

∆φd = −1.1◦
+0.85◦

−0.7◦ [5] for f = J/ψKS. The values (listed in chronological order) become more

accurate with more precise data the on the control channels. A general drawback of the method is

the unknown size of SU(3) f breaking caused by unequal strange and down quark masses. SU(3) f

symmetry can be very accurate, as e.g. in semileptonic Bd,s decays, but may also fail completely:

for example, a b quark fragments into a Bd meson almost four times more often than into a Bs. In

the case of Bs → J/ψφ one faces the problem that the φ meson is an equal mixture of an octet and a

singlet of SU(3) f symmetry. It is not clear how to treat SU(3) f breaking in such a case of maximal

symmetry violation and the method may fail in this case.

The experimental world average 2β +∆φd = 43.8◦± 1.4◦ [7] is dominated by Bd → J/ψKS,

so that ∆φd here can be identified with the penguin pollution in this mode. The experimental

error is comparable in size with the expected penguin pollution. The situation is similar with

the experimental value 2βs +∆φs = 1.7◦± 1.9◦ [7] which dominantly stems from LHCb data on

Bs → J/ψK+K− and Bs → J/ψ f0[→ π+π−], with an experimental error of 2.2◦ on 2βs + ∆φs

[9]. The statistical powers of Bs → J/ψφ [→ K+K−], non-resonant Bs → J/ψK+K−, and Bs →
J/ψ f0[→ π+π−] on the determination of 2βs +∆φs are 52%, 8%, and 42%, respectively [10]. The

value of 2βs inferred from a global fit to the CKM unitarity triangle is 2βs = 2.12◦±0.04◦ [8].

In this talk I present calculations of the penguin contributions to CP asymmetries which do not

use SU(3)F symmetry, but instead employ soft-collinear factorisation in QCD [6].
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Figure 2: Pictorial representation of the OPE for the up-quark loop: Since the momentum transfer q to the

charmonium is large, we can express the left diagram as the product of a perturbative Wilson coefficient and

the effective four-quark operator on the right.

2. Operator Product Expansion

Many physical problems involve a hard scale
√

q2 which is much larger than the fundamental

scale ΛQCD ∼ 0.4GeV of QCD. The operator product expansion (OPE) is a calculational tool to

express the quantity of interest in terms of a series in ΛQCD/
√

q. In our case we a apply the OPE

to Pf in Eq. (1.6) and
√

q2 ∼ mψ ∼ 3GeV is the hard scale. The troublesome contribution to Pf

stems from Qu
1,2 in Eq. (1.6); the corresponding one-loop contribution is shown in Fig. 2. The OPE

for the contribution of Qu
j , j = 1,2, to Pf for Bd → J/ψKS reads

〈J/ψKS|Qu
j |Bd〉 = ∑

k

C̃ j,k〈J/ψKS|Qk|Bd〉+ . . . (2.1)

Here k = 0V,0A,8V,8A labels different local four-quark operators with flavour structure bscc:

Q0V ≡ bγµ(1− γ5)scγµc,

Q0A ≡ bγµ(1− γ5)scγµγ5c,

Q8V ≡ bγµ(1− γ5)T
ascγµT ac,

Q8A ≡ bγµ(1− γ5)T
ascγµγ5T ac. (2.2)

These operators suffice to reproduce Pf at the leading power of ΛQCD/
√

q. Sub-leading powers

involve additional operators , which are indicated by the dots in Eq. (2.1). The Wilson coefficients

C̃ j,k in Eq. (2.1) are found by calculating b → ccs Feynman diagrams with Qu
j in the desired order

of αs and comparing the result with Feynman diagrams involving the operators Qk in Eq. (2.2) in

the corresponding order of QCD. The leading non-vanishing order, shown in Fig. 2, only involves

the operator Q8V on the right-hand side (RHS) of the OPE in Eq. (2.1). The coefficient is

C̃
(0)
2,8V =

2

3

αs

4π

[
ln

(
q2

µ2

)
− iπ − 2

3

]
, (2.3)

where µ is the renormalisation scale. The idea to factorise the one-loop diagram in this way

was proposed by Bander, Silverman, and Soni (BSS) in Ref. [11] and applied to Bd → J/ψKS
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Figure 3: The soft IR divergence of the first diagram (contributing to the LHS of Eq. (2.1)) factorises with

the corresponding diagram of the local operator (RHS of Eq. (2.1)) shown next. The third diagram has a

collinear IR divergence and finally a spectator-scattering diagram is shown.

in Ref. [12]. In order to establish the OPE in Eq. (2.1) one must prove that the coefficients C̃ j,k

are free from infrared singularities, which involves the study of higher orders in αs. This proof has

been carried out in Ref. [6] and involves the analysis of (i) soft IR divergences of the two-loop dia-

grams contributing to 〈Qu
j〉, (ii) collinear IR divergences of these diagrams, (iii) spectator scattering

diagrams, and (iv) higher-order diagrams in which the large momentum bypasses the penguin loop

(“long distance penguins”). Sample diagrams are shown in Fig. 3. In Ref. [6] it has been shown

that indeed all infrared singularities properly factorise and cancel from the coefficients C̃ j,k, which

therefore can be calculated perturbatively order-by-order in αs. The leading order (LO) contribu-

tion to the C̃ j,k stems from the penguin operators Q3−6 in Eq. (1.6), which contribute trivially to

Eq. (2.1) as local bscc operators. The dependence of C3−6 on the unphysical renormalisation scale

µ cancels (to order αs) with the µ-dependent terms of the next-to-leading order (NLO) corrections.

The result in Eq. (2.3) belongs to the NLO and depends on the renormalisation scale and scheme.

It is only meaningful in combination with the LO contributions involving C3−6, so that these scale

and scheme dependences cancel. In Ref. [12] the LO contribution has been omitted and the inferred

penguin pollution is substantially smaller than the one found by us.

The standard application of soft-collinear factorisation in flavour physics addresses B decays

into two light mesons (QCD factorisation) [13]. In our case instead one of the final-state mesons is

heavy and the J/ψ mass is the relevant heavy scale in the problem. As a consequence, we cannot

factorise the matrix element of colour-octet four-quark operators into a form factor and a decay

constant [14].

3. Matrix elements and numerical results

In order to predict the size of the penguin pollution ∆φd for Bd → J/ψKS in Eq. (1.7) from the

calculated Re(Pf /Tf ) we need the (ratios of the) hadronic matrix elements

v0V0 ≡ 〈J/ψK0|Q0V |Bd〉, a0V0 ≡ 〈J/ψK0|Q0A|Bd〉,
v8V0 ≡ 〈J/ψK0|Q8V |Bd〉, a8V0 ≡ 〈J/ψK0|Q8A|Bd〉. (3.1)

Eq. (3.1) defines the complex parameters v0,8 and a0,8 with the common normalisation factor

V0 ≡ 〈J/ψK0|Q0V |Bd〉fact = 2 fJ/ψmBd
pcmFB→K

1 (m2
ψ) = (4.26±0.16)GeV3. (3.2)
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V0 is the factorised matrix element of the colour-singlet operator Q0V involving the J/ψ decay

constant fJ/ψ , the Bd mass mBd
, the magnitude of the KS center-of mass three-momentum pcm, and

the form factor FB→K
1 . Next v0,8 and a0,8 are categorised in terms of 1/Nc counting, where Nc = 3

is the number of colours. One has v0 = 1+O(1/N2
c ), v8,a8 = O(1/Nc), and a0 = O(1/N2

c ). It is

well-known that the coefficient of v0 in Tf is small, so that the branching ratio B(Bd → J/ψKS) is

dominated by v8 and a8. Therefore we can use the measured B(Bd → J/ψKS)exp as a cross-check

of our colour counting for the peculiar colour-octet matrix elements. With the numerical values of

the Wilson coefficients and Eq. (3.2) one finds [6]:

B(Bd → J/ψKS)

B(Bd → J/ψKS)exp

= [1±0.08] |0.47v0 +7.8(v8 −a8)|2 . (3.3)

This implies 0.07 ≤ |v8 −a8| ≤ 0.19 if v0 is set to 1, illustrating that the colour counting works for

the branching ratio. a0 comes with small coefficients in both Tf and Pf and is negligible. For the

prediction of Pf /Tf at NLO we need v8 and impose |v8| ≤ 1/3, complying with colour counting,

and vary the phases of the matrix elements between −π and π . The result is [6]

|∆d| ≤ 0.68◦, |CJ/ψKS
| ≤ 1.33 ·10−2. (3.4)

The bound on ∆d is comparable to the one derived from SU(3)F symmetry (quoted in the introduc-

tion), but sharper.

In the case of Bs → J/ψφ one finds

(J/ψφ)0 (J/ψφ)‖ (J/ψφ)⊥

|∆φs| ≤ 0.97◦ |∆φs| ≤ 1.22◦ |∆φs| ≤ 0.99◦

|C f | ≤ 1.89 ·10−2 |C f | ≤ 2.35 ·10−2 |C f | ≤ 1.92 ·10−2

for the scalar, parallel, and perpendicular polarisation states, respectively.

As a novel feature, the method of Ref. [6] permits the prediction of the penguin contributions

to b → ccd decays, for example:

Bd → J/ψπ0 : |SJ/ψπ0 + sin(2β )| ≤ 0.18, |CJ/ψπ0 | ≤ 0.29. (3.5)

Bs → J/ψKS : |SJ/ψKS
− sin(−2βs)| ≤ 0.26, |CJ/ψKS

| ≤ 0.27. (3.6)

The first result means −0.86 ≤ SJ/ψπ0 ≤ −0.50. Eq. (3.5) favours the Belle result [15] SJ/ψπ0 =

−0.67±0.22, CJ/ψπ0 =−0.08±0.17 over the BaBar result [16] SJ/ψπ0 =−1.23±0.21, CJ/ψπ0 =

−0.20±0.19. Predictions for more b → ccs and b → ccd modes can be found in Tab. 1 of Ref. [6].

It is worthwhile to compare the methods and results presented in this talk with those of the

alternative approach based on SU(3)F symmetry: It is gratifying to see that the two completely

different methods give compatible results for ∆φd in the case of Bd → J/ψKS. However, the SU(3)F

estimate of ∆φd depends on the choice for the size of SU(3)F breaking added to the value of

Pf /Tf extracted from the b → ccd control channels. In analyses of branching fractions (which

probe Tf with little sensitivity to Pf ) it is possible to include linear SU(3)F breaking in the Tf

amplitudes and thereby test the quality of the method from the data (see Ref. [4] for B → J/ψX

decays and Refs. [18] and [17] for B,D decays to two light mesons, respectively). However, in
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the case of the up-quark loop in Pf there is not enough information to disentangle the penguin

pollution from the matrix elements parametrising SU(3)F breaking, no matter how many control

channels are included: The SU(3)F breaking stemming from the d → s replacement when linking

the b → ccd control channel to the b → ccs signal process is never constrained by any of these

control channel processes. On the contrary, the OPE-based approach of Ref. [6] makes enough

redundant predictions to simultaneously test the method and to constrain the penguin pollution in

the b → ccs decays: Here the litmus test are the predictions for the various b → ccd channels (such

as those in Eqs. (3.5) and (3.6)), which make the method falsifiable.

The SU(3)F method utilises the feature that the SU(3)F symmetry is approximately exact, with

corrections treatable as small (i.e. O(30%)) perturbations. The quality of the symmetry allows us

to assign exact or approximate SU(3)F quantum numbers to the particle states, as we routinely

do for the light pseudoscalar mesons. In the case of Bs → J/ψφ one faces the fact that the φ

meson is an equal mixture of octet and singlet, so that it does not correspond to an approximate

SU(3)F eigenstate. There are two possible explanations of this observations: (i) SU(3)F is not

a good symmetry for decays into final states with vector mesons. (ii) SU(3)F breaking is small,

but the spectrum of the “unperturbed” strong hamiltonian (corresponding to the limit ms = md =

mu) is almost degenerate, so that even a small perturbation can lead to maximal mixing. If case

(i) is realised in nature, SU(3)F cannot be applied to constrain the penguin pollution in Bs →
J/ψφ . If (ii) is the correct explanation, a necessary ingredient of an SU(3)F -based assessment

of the penguin pollution is the determination of both the octet and singlet matrix elements from

the control channels. In addition, one must develop a formalism which permits the treatment of

SU(3)F breaking for the case that the final states of the considered decays cannot be approximated

by SU(3)F eigenstates. In view of this situation it is safe to say that SU(3)F -based estimates of the

penguin pollution in Bs → J/ψφ rest on shaky ground.

4. Conclusions and outlook

In this talk I have presented results of Ref. [6] for the penguin pollution affecting the extrac-

tions of the CP phases 2β and 2βs from the decays Bd → J/ψKS and Bs → J/ψφ , respectively. The

predictions are based on a new calculational approach which utilises an operator product expansion

(OPE) for the penguin amplitude. To establish the OPE the infrared safety of the Wilson coeffi-

cients calculated from the up-quark loop contribution to the penguin amplitude had to be proven,

which elevates the BSS approach of Ref. [11] to a field-theoretic concept applicable at any order

of αs. (However, we found no justification to apply the OPE to the charm-quark loop, which in our

framework resides in the hadronic matrix elements.) Our method can also be applied to CP asym-

metries in b → ccd decays, in which the penguin-to-tree ratio is much larger. As examples I have

quoted bounds on the penguin contributions for the CP asymmetries in the decays Bd → J/ψπ0

and Bs → J/ψKS. The confrontation of our predictions for b → ccd decays with more precise data

will be a stringent test of the OPE-based approach. In the future the errors of the predictions may

shrink, if effort is put into the calculation of the hadronic parameter v8, possibly with the help of

QCD sum rules. In my talk I have further expressed a critical view of the application of SU(3)F

symmetry to the penguin pollution in Bs → J/ψφ .
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