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Figure 1: Bounds on the NP scale Λ from ∆F = 2 decays. See Ref. [3] for details and the UTfit updates
given at this conference.

1. Introduction

Since 2012, the UTfit Collaboration has performed its own combination of the D mixing exper-
imental data, yielding a quite precise determination of the mixing parameters showing no sign of
CP violation [1, 2]. The spectacular experimental progress that we have witnessed in the past few
years is leading us in the precision charm physics era, calling for substantial theoretical advances
to fully exploit the wealth of available data.

Fig. 1 shows the lower bounds on the new-physics (NP) scale Λ coming from all the neutral
meson systems: the case shown corresponds to a general NP scenario, with arbitrary NP flavour
structures (|Fi| ∼ 1 where Fi is a function of the NP flavour couplings) with arbitrary phase and
a loop factor Li = 1 corresponding to strongly-interacting and/or tree-level NP. If we consider the
most general effective Hamiltonian for ∆F = 2 processes, we can translate the current constraints
from a model-independent NP global UT fit into allowed ranges for the Wilson coefficients of
H∆F=2

eff . The full procedure and analysis details are given in [3]. These coefficients have the general
form

Ci(Λ) =
Fi Li

Λ2 (1.1)

For a generic strongly-interacting theory with arbitrary flavour structure, one expects Fi ∼ Li ∼ 1 so
that the allowed range from the fit for each of the Ci(Λ) can be immediately translated into a lower
bound on Λ. Specific assumptions on the flavour structure of NP corresponds to particular choices
of the Fi functions. As Fig. 1 shows, the overall constraint on the NP scale comes from the kaon
system (Im C4

K), but charm physics also provides quite stringent constraints, allowing us to probe
energies as high as 104 TeV, with ample room for sizable improvements, both from the theoretical
and experimental point of view.

We present here the updated fit to the experimental data that are reported in Table 1 of the
2014 Ref. [2]: Table 1 here shows only the results updated after the 2014 analysis, following the
statistical method described in Ref. [4] improved with a Markov-chain Monte Carlo as implemented
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Table 1: Subset of the experimental data updated since the 2014 analysis [2]. The averages are taken from
the HFAG [6]. α = (1+ |q/p|)2/2. Asymmetric errors have been symmetrised.

Observable Value Correlation Coeff. Reference
yCP (0.835±0.155)% [7, 8, 9, 10]

[11, 12, 13, 14]
AΓ (−0.059±0.040)% [15, 11, 12]

[13, 16, 17]
x (0.53±0.19±0.06±0.07)% 1 0.054 -0.074 -0.031 [18]
y (0.28±0.15±0.05±0.05)% 0.054 1 0.034 -0.019 [18]
|q/p| (0.91±0.16±0.50±0.60) -0.074 0.034 1 0.044 [18]

φ (−6±11±3±4)◦ -0.031 -0.019 0.044 1 [18]

in the BAT library [5]. The input averages are taken from the Heavy Flavour Averaging Group
(HFAG) [6]. The following parameters are varied with flat priors in a sufficiently large range:

x =
∆m
Γ

, y =
∆Γ

2Γ
,

∣∣∣∣qp
∣∣∣∣ , δKπ , δKππ , RD , (1.2)

where q and p are defined as |DL,S〉= p|D0〉±q|D̄0〉 with |p|2+ |q|2 = 1, δKπ(π) is the strong phase
difference between the amplitudes A(D̄→ K+π−(π0)) and A(D→ K+π−(π0)) and

RD =
Γ(D0→ K+π−)+Γ(D̄0→ K−π+)

Γ(D0→ K−π+)+Γ(D̄0→ K+π−)
. (1.3)

We make the following assumptions in order to combine the measurements in Table 1: i)
we assume that Cabibbo allowed (CA) and doubly Cabibbo suppressed (DCS) decays are purely
tree-level SM processes, neglecting direct CP violation; ii) we neglect the weak phase difference
between these channels, which is of O(10−3). One can then write the following equations [19, 20,
21, 22, 23, 1]:

δ =
1−|q/p|2

1+ |q/p|2
, arg(Γ12 q/p) = arg(y+ iδx) ,

AM =
|q/p|4−1
|q/p|4 +1

, RM =
x2 + y2

2
,(

x′f
y′f

)
=

(
cosδ f sinδ f

−sinδ f cosδ f

)(
x
y

)
,

(x′±) f =

∣∣∣∣qp
∣∣∣∣±1

(x′f cosφ ± y′f sinφ) , (y′±) f =

∣∣∣∣qp
∣∣∣∣±1

(y′f cosφ ∓ x′f sinφ) ,

yCP =

(∣∣∣∣qp
∣∣∣∣+ ∣∣∣∣ p

q

∣∣∣∣) y
2

cosφ −
(∣∣∣∣qp

∣∣∣∣− ∣∣∣∣ p
q

∣∣∣∣) x
2

sinφ ,

AΓ =

(∣∣∣∣qp
∣∣∣∣− ∣∣∣∣ p

q

∣∣∣∣) y
2

cosφ −
(∣∣∣∣qp

∣∣∣∣+ ∣∣∣∣ p
q

∣∣∣∣) x
2

sinφ ,

(
y′CPA

)
f =

(y′+) f +(y′−) f

2
,
(
x′CPA

)2
f +
(
y′CPA

)2
f =

(x′+)
2
f +(x′−)

2
f +(y′+)

2
f +(y′−)

2
f

2
,
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Table 2: Results of the fit to D mixing data.
parameter result @ 68% prob. 95% prob. range
|M12| [ps−1] (4.3±1.8) ·10−3 [0.6,7.5] ·10−3

|Γ12| [ps−1] (14.1±1.4) ·10−3 [11.1,17.3] ·10−3

ΦM12 [◦] (0.8±2.6) [−5.8,8.8]
x (3.5±1.5) ·10−3 [0.5,6.3] ·10−3

y (5.8±0.6) ·10−3 [4.5,7.1] ·10−3

|q/p|−1 0.007±0.018 [−0.030,0.045]
φ [◦] −0.21±0.57 [−1.53,1.02]

Figure 2: One-dimensional p.d.f. for the parameters |M12|, |Γ12| and ΦM12 .

valid for CA and DCS final states f .
In the standard CKM phase convention (taking CP|D〉 = |D̄〉), within the approximation we

are using, CA and DCS decay amplitudes have vanishing weak phase and φ = arg(q/p). Given the
present experimental accuracy, one can assume Γ12 to be real, leading to the relation

φ = arg(y+ iδx) . (1.4)

For the purpose of constraining NP, it is useful to express the fit results in terms of the ∆C = 2
effective Hamiltonian matrix elements M12 and Γ12:

|M12|=
1

τD

√
x2 +δ 2y2

4(1−δ 2)
∼ x

2τD
+O(δ 2) , |Γ12|=

1
τD

√
y2 +δ 2x2

1−δ 2 ∼ y
τD

+O(δ 2) ,

sinΦ12 =
|Γ12|2 +4|M12|2− (x2 + y2)|q/p|2/τ2

D

4|M12Γ12|
∼ x2 + y2

xy
δ +O(δ 2) , (1.5)

with Φ12 = arg(Γ12/M12) and τD = 0.41 ps. Consistently with the assumptions above, Γ12 can be
taken real with negligible NP contributions, and a non-vanishing Φ12 = −ΦM12 can be interpreted
as a signal of new sources of CP violation in M12.

The results of the fit are reported in Table 2. The corresponding probability density functions
(p.d.f.’s) are shown in Figs. 2 and 3. As can be seen from Table 2, the fitted value of δ is at the
percent level and indeed the central values of |M12|, |Γ12| and Φ12 are compatible with the expanded
formulae in eq. (1.5). However in our fit we used the exact formulae since the region of x . 10−4,
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Figure 3: Results of the updated fit to D mixing data. One- and two-dimensional p.d.f.’s are shown for the
parameters x, y, φ , and |q/p|. See Ref. [2] for details.

still allowed by experimental data (although with probability less than 5%), breaks the validity of
the small δ expansion.

The results in Table 2 can be used to constrain NP contributions to D− D̄ mixing and decays.
Our results are in very good agreement with the fit labelled “No direct CPV in DCS decays” by
HFAG [6], now that HFAG uses the theoretical relation in eq. (1.4) as we suggested in our first
paper [1].
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