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1. Standard model

The Standard Model (SM) is very successful at low energies. It is gauge theory of SU(3)C ×
SU(2)L ×U(1)Y , whose Lagrangian density consists of four parts;

L = Lgauge +LHiggs +Lfermion +LYukawa ,

Lgauge = −1
2 TrGµνGµν − 1

2 TrFµνFµν − 1
4 BµνBµν ,

LHiggs = |DµΦ|2 −V [Φ] ,

Lfermion = ∑ψ jiγ
µDµψ j ,

LYukawa = ∑
{

yd
jkψ jΦψk + yu

jkψ jΦ̃ψk
}
+(h.c.) . (1.1)

The form of the parts Lgauge and Lfermion is determined by the gauge principle, and is beautiful.
The form of the Higgs potential V [Φ] in LHiggs, however, is given in ad hoc manner. The Yukawa
couplings yu,d

jk in LYukawa are arbitrary as well. The parts LHiggs and LYukawa lack a principle.
The electroweak (EW) gauge symmetry breaking in the SM is brought about by an intentional

choice of V [Φ] which is assumed to have a global minimum at ⟨Φ⟩ ̸= 0. In other words, the EW
gauge symmetry breaking is enforced by hand. The Higgs boson remains mysterious in the SM.

2. Gauge-Higgs unification

In the gauge-Higgs unification one starts with gauge theory in higher dimensions.[1, 2, 3] The
Higgs field becomes a part of the extra-dimensional component of gauge fields. Schematically

Lgauge +LHiggs =⇒ L 5d
gauge ,

Lfermion +LYukawa =⇒ L 5d
fermion . (2.1)

The effective Higgs potential is generated dynamically at the quantum level from L 5d
gauge+L 5d

fermion.
In short, the theory is governed by the gauge principle, and becomes concise and beautiful.[4, 5]

In the gauge-Higgs unification in five dimensions (xµ ,y)

AM =

Aµ ⊃ γ,W,Z

Ay ⊃ Higgs boson ∼ Aharonov-Bohm (AB) phase θH

(2.2)

When the fifth dimension is not simply connected, the Higgs field appears as an Aharonov-Bohm
phase θH in the fifth dimension. The effective potential Veff(θH) becomes nontrivial at the one-loop
level. When Veff(θH) is minimized at θH ̸= 0, the EW symmetry is dynamically broken. Finite
Higgs boson mass is generated. The gauge-hierarchy problem is solved.

3. SO(5)×U(1) gauge-Higgs EW unification

The Randall-Sundrum (RS) warped space is specified with the metric

ds2 = e−2σ(y)dxµdxµ +dy2 ,
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σ(y) = σ(−y) = σ(y+2L) ,

σ(y) = k|y| for |y| ≤ L. (3.1)

The RS space has topology of M4 × (S1/Z2), in which (xµ ,y),(xµ ,−y) and (xµ ,y+ 2L) are iden-
tified. Its fundamental region is 5d AdS space sandwiched by UV and IR branes, at y0 = 0 and
y1 = L. The 5d cosmological constant is given by Λ = −6k2. The SO(5) and U(1)X gauge fields,
AM and BM, satisfy(

Aµ

Ay

)
(x,y j − y) = Pj

(
Aµ

−Ay

)
(x,y j + y)P−1

j , Pj ∈ SO(5) , P2
j = 1 ,

(
Bµ

By

)
(x,y j − y) =

(
Bµ

−By

)
(x,y j + y) , (3.2)

Although gauge potentials themselves are not single-valued, physical gauge-invariant quantities
are single-valued.[6]-[10]

The set of the matrices P0,P1 is called the orbifold boundary condition. We take

P0 = P1 =


−1

−1
−1

−1
+1

 , (3.3)

by which gauge symmetry G = SO(5)×U(1)X is reduced to H = SO(4)×U(1)X . Zero modes
(parity even-even modes) appear in the H part of Aµ ,Bµ , and in the G /H part of Ay. The latter
is an SO(4)≃ SU(2)L ×SU(2)R vector, or an SU(2)L doublet, corresponding to the 4d Higgs field
in the SM.

Quark-lepton multiplets are introduced in the vector representation of SO(5) in the bulk. In
addition, one introduces dark fermions in the spinor representation in the bulk. On the UV brane
at y = 0 brane fermions in SU(2)L doublet and a brane scalar Φ in SU(2)R doublet are introduced.
The brane scalar Φ spontaneously breaks SU(2)R ×U(1)X to U(1)Y , and at the same time gives
rise to additional mass terms for fermions. The resultant spectrum at low energies (< 1TeV) is that
of the SM. The effective potential Veff(θH) is evaluated at the one loop. Contributions from the top
quark multiplet and dark fermions triggers the EW gauge symmetry breaking with a Higgs boson
mass mH = 125GeV.

4. Success

The SO(5)×U(1)X gauge-Higgs unification is successful. The gauge principle governs the
theory, including dynamics of the 4d Higgs boson.[10]-[24]

(1) The 4d Higgs boson, the four-dimensional fluctuation mode of the AB phase θH in the fifth
dimension, is massless at the tree level but acquires a nonvanishing mass at the one loop level
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which is free from divergence and independent of regularization methods employed. The gauge
hierarchy problem, a cumbersome problem in many theories, is naturally solved.

(2) The phenomenology at low energies (≤ 1TeV) for θH < 0.1 is almost the same as in the SM.

(3) There is no vacuum instability problem associated with the 4d Higgs scalar field.[25] The
effective potential for the 4d Higgs field H(x) is given by Veff(θH + H/ fH). The large gauge
invariance guarantees the periodicity Veff(θH + 2π) = Veff(θH), which in turn implies that there
never occurs the instability. It has been explicitly shown that Veff(θH) is finite at the one loop level.

(4) Dynamical EW symmetry breaking takes place in the RS space. The existence of a heavy quark,
the top quark mt > mW , is crucial . Veff(θH) is controlled by the W and Z bosons, the top quark
multiplet, and the dark fermions. Light quarks and leptons multiplets are irrelevant for the EW
symmetry breaking in the RS space.

5. Predictions

The gauge-Higgs unification gives many predictions to be confirmed by the forthcoming and
future experiments. Although the model contains several parameters, most of physical quantities
are determined by the AB phase θH .

(a) The Yukawa couplings of quarks and leptons, Yα , the three-point couplings of the Higgs boson
to W,Z bosons, gHWW ,gHZZ , are given, in good approximation, by[8, 11]

Yα ,gHWW ,gHZZ ≃ (SM values)× cosθH . (5.1)

The deviation from the SM is less than 1% for θH < 0.1.

(b) Decay of the Higgs boson to γγ , Zγ , and two gluons take place through one-loop diagrams.
In the gauge-Higgs unification an infinite number of various Kaluza-Klein (KK) modes run inside
the loop. (Fig. 1) Each of their contributions gives O(1/n) correction to the decay width where
n is the KK number. There appears miraculous cancellation among them so that the sum of all
contributions turns out finite and small. It gives less than 1% correction to those in which SM
particles run inside the loop for θH < 0.1. The cancellation in the process H → Zγ is highly
nontrivial, as the KK number can change inside the loop.[10, 19]

H �

�

W (n)X

n

H �W (n)

ZW (m)

W (m)
R

X

n,m

Figure 1: Diagrams contributing to H → γγ ,Zγ . The infinite sums converge and give small corrections to
the SM. There are diagrams in which the top quark and its KK tower run inside the loops.

(c) An immediate consequence of (a) and (b) is that both the production rate of the Higgs boson at
LHC and decay widths of the Higgs boson to various modes are all suppressed in good approxima-
tion by a factor cos2 θH compared to those in the SM. Branching fractions of various decay modes
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are nearly the same as in the SM. The signal strengths of the various decay modes are suppressed
by a factor cos2 θH . For θH < 0.1 the deviation from the SM is less than 1%.

(d) The Higgs cubic and quartic self-couplings, λ H
3 ,λ H

4 , deviate from those in the SM, which can be
tested in future. Although the model has several parameters to be fixed, many of physical quantities
such as λ H

3 , λ H
4 , the KK mass scale mKK, and the masses of the first KK modes γ(1),Z(1),W (1)

depend only on θH in very good approximation. This property is called the universality. (Fig. 2)

The universality leads to strong prediction power in the gauge-Higgs unification. Suppose
that the first KK mode Z(1) is found at m0. From the relation mZ(1)(θH) = m0, the value θH is
determined. Then other quantities λ H

3 (θH), λ H
4 (θH), mW (1)(θH) etc. are determined, and can be

checked experimentally.
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Figure 2: Universality. λ H
3 , λ H

4 , mKK, mZ(1) , mγ(1) , mW (1) etc. are determined by θH , almost independent of
the details of the model. In particular, they do not depend on the number nF of dark fermions.

(e) The prediction of Z′ events gives the cleanest test of the model. (Fig. 3) The first KK modes
of the photon, Z boson, and ZR boson appear as Z′ events. (ZR is associated with SU(2)R, and
has no zero mode.) For θH = 0.114, their masses are (m

Z(1)
R
,mZ(1) ,mγ(1)) = (5.73,6.07,6.08)TeV

and the widths are (Γ
Z(1)

R
,ΓZ(1) ,Γγ(1)) = (482,342,886)GeV. For θH = 0.073, their masses are

(m
Z(1)

R
,mZ(1) ,mγ(1))= (8.00,8.61,8.61)TeV and the widths are (Γ

Z(1)
R
,ΓZ(1) ,Γγ(1))= (553,494,1040)

GeV.[24]
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Figure 3: Z′ production at LHC.
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6. SO(11) gauge-Higgs grand unification

It is necessary to incorporate strong interactions in the framework of gauge-Higgs unification.
This leads to gauge-Higgs grand unification.[26]-[37] We look for a scenario in which the EW
Higgs boson appears as the extra-dimensional component of gauge potentials, and electromagnetic,
weak, and strong interactions are unified in a single group, and no exotic particles appears at low
energies.

One might think that the gauge group should contain SO(5)×U(1)X ×SU(3)C as a subgroup.
This turns out not to be the case. It is seen that SO(11) gauge theory does a job, keeping good
features of the SO(5)×U(1)X gauge-Higgs EW unification.[34, 36]

One starts with G = SO(11) gauge theory in the Randall-Sundrum warped space (3.1). The
orbifold boundary condition is given by

Pvec
0 = diag(I10,−I1) , Pvec

1 = diag(I4,−I7) ,

Psp
0 = I16 ⊗σ3 , Psp

1 = I2 ⊗σ3 ⊗ I8 (6.1)

in vectorial and spinorial representations. At the UV brane SO(11) is broken to SO(10) by P0,
whereas at the IR brane it is broken to SO(4)× SO(7). As a whole G = SO(11) is broken to
H = SO(4)×SO(6). Note that SO(4)≃ SU(2)L ×SU(2)R, and SO(6)≃ SU(4). At this stage Aµ

has zero modes in the block H . On the other hand Ay has zero modes in the block [G /SO(10)]∩
[G /SO(4)× SO(7)]. In the vectorial representation Ay has zero modes in the components Aa11

y

(a = 1 ∼ 4), which correspond to the 4d Higgs field in the SM. (Fig. 4)

Aµ :

0

B@

1

CA
(+,+)

(+,+)

(�,�)(+,�)

(�,+)

SO(4)

SO(6)

Ay :

0

B@

1

CA
(+,+)

(�,�)

(�,�)

(+,�)

(�,+)

Higgs doublet

Figure 4: SO(11) gauge-Higgs grand unification. Parity (P0,P1) = (+,+) modes appear in the SO(4)×
SO(6) block of Aµ and in the [SO(11)/SO(10)]∩ [SO(11)/SO(4)×SO(7)] block of Ay, Aa11

y (a = 1 ∼ 4).

On the UV brane a brane scalar Φ16 is introduced. Φ16 spontaneously breaks SO(10) to
SU(5). As a result G = SO(11) is reduced to GSM = SU(2)L ×U(1)Y × SU(3)C. Note that
SU(3)C ⊂ SO(6), and that U(1)Y is a combination of SU(2)R and SO(6). GSM is dynamically
broken to U(1)EM × SU(3)C through the Hosotani mechanism. The Weinberg angle at the GUT
scale becomes sin2 θW = 3

8 , the same value as in the SU(5) or SO(10) GUT in four dimensions.
See the comparison of gauge-Higgs EW and grand unification in Fig. 5.

Fermions are introduced in the spinor (Ψ32) and vector (Ψ11) representations of SO(11). Ψ32,
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SO(4) ⇥ SO(6)

SU(2)L ⇥ U(1)Y ⇥ SU(3)C

U(1)EM ⇥ SU(3)C

SO(11)

P0 6= P1

�16
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SO(5) ⇥ U(1)X ⇥ SU(3)C
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U(1)EM ⇥ SU(3)C

P0 = P1

�(1,2)

✓H

EW unification

BC

brane scalar

Hosotani mech.

Figure 5: Comparison of gauge-Higgs EW and grand unification

for instance, satisfies Ψ32(x,y j − y) =−γ5Psp
j Ψ32(x,y j + y). The content of Ψ32 is given by

Ψ32 =

(
Ψ16

Ψ16

)
, Ψ16 =



ν
e
ê
ν̂
uk

dk

d̂k

ûk


, Ψ16 =



ν ′

e′

ê′

ν̂ ′

u′k
d′

k

d̂′
k

û′k


, (k = 1 ∼ 3),

zero modes :

(
νL

eL

)
,

(
ukL

dkL

)
,

(
ν ′

R

e′R

)
,

(
u′kR
d′

kR

)
. (6.2)

ê, û, and d̂ fields have charges +1, −2
3 , and +1

3 , respectively. Zero modes appear only for the
components of quarks and leptons. Vector multiplets Ψ11 are introduced to reproduce the mass
spectrum of down-type quarks and leptons.

One interesting feature is that all quarks and leptons appear in Ψ32 as particles with the Ψ-
fermion number NΨ = +1. NΨ is conserved even in the presence of Ψ11. A proton has NΨ = 3,
whereas π0e+ has NΨ = −1. Thus the proton decay p → π0e+ is forbidden. This should be
contrasted to the situation in the 4d GUT. In SO(10) GUT in four dimensions a fermion multi-
plet is introduced in the spinor representation Ψ16 for left-handed fields. In the notation in (6.2),
(uk,dk)→ (ukL,dkL) and (ûk, d̂k)→ (uc

kL,dc
kL). As uc

kL ∼ ukR
†, gauge and Higgs interactions con-

vert a particle to an anti-particle, which induces proton decay. In the gauge-Higgs grand unification
such process is absent and the proton decay is naturally suppressed.

However, there is a problem. Careful examination reveals that in the first and second genera-
tions û, d̂, ê have light masses, which contradicts the observation. The source of this difficulty lies
in the fact that the parity at y0 = 0 and y1 = L is (even, odd) or (odd, even) for û, d̂, ê. In the RS
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warped space it leads to light masses. In other words, P0 ̸= P1 in the RS warped space gives rise to
a trouble.

7. Gauge-Higgs grand unification in six dimensions

The difficulty is solved in gauge-Higgs unification in six-dimensional hybrid-warped space.[38]
Consider the six-dimensional space with a metric

ds2 = e−2σ(y)(dxµdxµ +dv2)+dy2 ,

σ(y) = σ(−y) = σ(y+2L5) ,

σ(y) = k|y| for |y| ≤ L5. (7.1)

We identify points

(xµ ,y,v)∼ (xµ ,y+2L5,v)∼ (xµ ,y,v+2πR6)

∼ (xµ ,−y,−v) . (7.2)

The spacetime has topology of M4 × (T 2/Z2). The fundamental region can be taken as {0 ≤ y ≤
L5,0 ≤ v < 2πR6} The metric (7.1) solves the Einstein equation with five-dimensional branes at
y= 0 and y= L5. Six-dimensional spacetime is an AdS space with Λ=−10k2. The sixth dimension
is curled up in a circle with a very small radius R6. We suppose that zL = ekL5 ≫ 1 and

mKK5 =
πk

ekL5 −1
∼ πke−kL5 ≪ mKK6 =

1
R6

. (7.3)

Under Z2 parity (y,v)→ (−y,−v), there appear four fixed points. (See Fig. 6.)

(y0,v0) = (0,0), (y1,v1) = (L5,0), (y2,v2) = (0,πR6), (y3,v3) = (L5,πR6). (7.4)

x x

xx

0 1

2 3

2⇡R6

2L5

y

v

Figure 6: Four fixed points (in blue) in the 6 dimensional gauge-Higgs grand unification.The fundamental
region is given by 0 ≤ y ≤ L5,0 ≤ v < 2πR6. Red circle points represent a single spacetime point. Around
each fixed point, parity is defined.

We consider SO(11) gauge theory in the 6-dimensional hybrid-warped space (7.1). Gauge
potentials AM satisfyAµ

Ay

Av

(x,y j − y,v j − v) = Pj

 Aµ

−Ay

−Av

(x,y j + y,v j + v)P−1
j ,

7
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Pj or −Pj ∈ SO(11) , P2
j = 1 , P3 = P1P0P2 = P2P0P1 . (7.5)

Note that only three of the four Pj’s are independent, and the condition P1P0P2 = P2P0P1 must be
satisfied for the consistency. We take, in place of (6.1),

Pvec
0 = Pvec

1 = diag(I4,−I7) ,

Pvec
2 = Pvec

3 = diag(I10,−I1) . (7.6)

Fermion multiplets Ψ32 and Ψ11 are introduced in the bulk. Ψ32 is a 6d Weyl fermion, and
satisfies Ψ32(x,y j − y,v j − v) = Psp

j γ̄Ψ32(x,y j + y,v j + v) where γ̄ = −iΓ5Γ6. With this boundary
condition zero modes appear chiral, with the quark-lepton content given in (6.2). Furthermore, the
lightest modes of hat fields ê, d̂, û etc. have large masses of O(R−1

6 ).
The symmetry breaking pattern is similar to the five-dimensional case. The orbifold boundary

condition in the sixth dimension reduces SO(11) to SO(10), and the condition in the fifth dimension
reduces SO(11) to SO(4)×SO(7). A brane scalar Φ32(x,v) is introduced on the five-dimensional
UV brane at y = 0. It spontaneously breaks SO(11) to SU(5). As a result the SM symmetry
GSM = SU(2)L ×U(1)Y × SU(3)C survives. By the Hosotani mechanism the symmetry is further
broken to U(1)EM ×SU(3)C. Zero modes of Ay correspond to the 4d Higgs doublet. There appear
zero modes of Av in the same SO(11) components as Ay, which acquire masses of order gR−1

6 by
the Hosotani mechanism.

8. Summary

The gauge-Higgs unification is promising. The SO(5)×U(1) gauge-Higgs EW unification
gives definitive predictions to be tested in the forthcoming LHC experiments. The incorporation
of strong interactions leads to the SO(11) gauge-Higgs grand unification. It seems necessary to
introduce the sixth dimension to have a spectrum consistent at low energies. The fifth dimension
serves as an EW dimension, whereas the sixth dimension as a GUT dimension. We are entering
into an era of “New Dimensions”.
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